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A New Method for EEG-Based Concealed
Information Test

Deng Wang, Duoqian Miao, and Gunnar Blohm

Abstract—Forensic electroencephalogram (EEG)-based lie de-
tection has recently begun using the concealed information test
(CIT) as a potentially more robust alternative to the classical com-
parative questions test. The main problem with using CIT is that
it requires an objective and fast decision algorithm under the con-
straint of limited available information. In this study, we developed
a simple and feasible hierarchical knowledge base construction and
test method for efficient concealed information detection based on
objective EEG measures. We describe how a hierarchical feature
space was formed and which level of the feature space was suf-
ficient to accurately predict concealed information from the raw
EEG signal in a short time. A total of 11 subjects went through an
autobiographical paradigm test. A high accuracy of 95.23% in rec-
ognizing concealed information with a single EEG electrode within
about 20 seconds demonstrates effectiveness of the method.

Index Terms—Electroencephalogram (EEG), concealed infor-
mation test (CIT), hierarchical knowledge base, feature extraction,
EEG classification.

I. INTRODUCTION

R ECENTLY, polygraphs based on central nervous system
activity have been suggested to be more reliable for the

detection of concealed information than those based on physio-
logical measures [1]–[5]. In particular, electroencephalography
(EEG) monitors brain activity through electrodes on the scalp,
possesses a high temporal resolution and is considered to be
relatively convenient, inexpensive, and harmless compared
to other methods such as magnetoencephalography (MEG),
positron emission tomography (PET), functional magnetic res-
onance imaging (fMRI), and optical imaging [6]. In the last two
decades, researchers have investigated the use of event-related
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changes in EEG (known as event-related potentials—ERPs) for
concealed information detection [2]–[4], [7]–[11].
The traditional polygraph is based on a comparison of phys-

iological responses (e.g., changes in blood pressure, pulse, res-
piration, and skin conductivity) to relevant and control ques-
tions [12]–[15]. A classical method is the control question test
(CQT) which has been widely employed in criminal investiga-
tions, employee screening, and selection in several countries,
most notably in North America and Israel [12]. However, criti-
cisms of the CQT include nonsolid scientific principles and im-
proper control questions which enhance the risk of stress-related
false positive errors (e.g., innocent suspects classified as guilty)
[12], [13]. An alternative technique, the concealed information
test (CIT), also known as the guilty knowledge test [16], has
recently drawn considerable attention among researchers. This
test presents a set of question items to an examinee, which in-
clude one crime-related item (critical item) and several control
items (noncritical items). Items are selected so that an innocent
examinee (i.e., onewho does not possess the information) would
be unable to distinguish the critical item from the noncritical
items [9], [11].
In this study, we used the CIT technique which relied on con-

trasting brain waves evoked by relevant and control stimuli, and
developed a novel efficient (i.e., accuracy/time) EEG-based CIT
using machine learning algorithms. Through EEG signal pro-
cessing, we automatically detected brain waves corresponding
to different mental activity patterns to uncover the critical item
from noncritical items. Indeed, numerous studies have previ-
ously demonstrated that CIT based on brain signals can be very
accurate [2], [3], [7]–[11]. Besides detection accuracy, it is im-
portant to develop fast algorithms that can be used in real-life
CIT investigations, for a number of reasons. First, police work
is typically carried out under the pressure of time [17]. Second,
long time intervals may dissipate witness memory, particularly
since identification accuracy decreases with time for eyewitness
identification [18]. To our knowledge, no study to date has ana-
lyzed and described the accuracy/time trade-off for EEG-based
CIT. Moreover, extracting relevant EEG features for classifi-
cation is a crucial step in EEG analysis. Although there is a
wealth of research and literature on EEG signal processing (see
[19], [20] for reviews), analysis of EEG recordings from two
or more channels often results in high-dimensional data vectors
with very large amounts of spatiotemporal information. As a
result of increases in dimensionality, processing time increases
significantly. Indeed, many methods report good classification
accuracy but in the expense of long processing times in order
to optimize a test. In addition, the number of samples avail-
able for training classifiers is usually relatively small compared
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Fig. 1. Functional modules for the entire process include the following major components: 1) raw EEG signal acquisition, 2) signal preprocessing, 3) feature
extraction, 4) supervised learning, and 5) classification output. The signal preprocessing component performs band-pass filtered, winsorization, normalization,
and segment. Then the nonparametric weighted feature extraction (NWFE) was applied for signal representation. In the last two components, a novel hierarchical
knowledge base HKB construction and test method was proposed to extract discrimination rules, organize a feature space, and decide on an appropriate level
in the feature space for the best output according to a given test time and a certain confidence level.

to their dimensionality [21]. Therefore, the critical challenge is
to map the high dimensional feature space into a lower dimen-
sional space while maintaining relevant signal information, and
still obtaining high classification accuracy. Inspired by human
decision-making strategies, which attempt to meet criteria for
adequacy rather than to identify an optimal solution [22]–[24],
our method consists of a hierarchical knowledge construction
algorithm and test algorithm for EEG-based CIT. This method
provides an accurate, real-time algorithm that does not require
an exhaustive global optimization search but nevertheless ob-
tains high accuracy through supervised learning.
Here, our contributions mainly focus on tackling the ques-

tions of how to form an appropriate hierarchical feature space
and determining the most sufficient level of this space to ac-
curately detect the concealed information from the raw EEG
signals. We employed the nonparametric weighted feature ex-
traction (NWFE) [25], [26] method for EEG signal feature ex-
traction. Then we developed hierarchical learning and test algo-
rithms considering the computational costs—learning and test
time. The k-nearest neighbor algorithm ( -NN), one of the sim-
plest methods based on the closest training examples in the
feature space, was implemented on the data as the classifier.
We applied our method to experimental EEG data (mock atten-
tion-birthday which is similar to paradigms used in other CIT
studies) and obtained a high accuracy (95.23%) in recognizing
concealed information with a single electrode in about 20 sec-
onds on an ordinary desktop computer demonstrating the effec-
tiveness of the method.

II. MATERIALS AND METHODS

A. EEG Data Description

The data [29] used in this paper were recorded during an au-
tobiographical paradigm test. Eleven healthy male volunteers
between the ages of 22 and 35 years participated in this study.
They were right handed and had normal or corrected-to-normal
vision. They were not familiar with the scientific basis of the test
and only had knowledge about how to perform the test. Each
subject was asked to provide to the experimenter five numbers
(all 4 digits long), one of them being their year of birth. The
subjects did not reveal to the experimenter which one of the
numbers corresponded to their birth date until the end of ex-
periment. Each subject participated in 2 experimental runs, ex-
cept for subject 11, who participated in 3 runs. For subject 1, 3,

and 7, one run was discarded because of incorrect target stim-
ulus counting (see below). Therefore, a total of 20 experimental
runs were used in this study. In each run, each number was dis-
played to the subject randomly with thirty repetitions, resulting
in a total of stimuli. Each number was displayed
for one second and between the numbers, the screen was blank
for two seconds. The subjects did not respond to the items, but
were instructed to count the number of times the target stim-
ulus (year of birth) was presented (they were unaware that all
stimuli were repeated 30 times in each run). EEG signals were
recorded at frontal (Fz), central (Cz), and parietal (Pz) electrode
positions of the 10–20 international electrode placement system.
All electrodes were referenced to linked mastoids. Vertical EOG
was also recorded for blink artifact detection. EEG signals were
digitally sampled at 256 Hz.

B. Methodology

The method consists of EEG signal preprocessing, feature
extraction, supervised learning for hierarchical knowledge base
with a time cost construction, and classification [30]
(see Fig. 1). More specifically, raw EEG signals were first pre-
processed. Then we determined the best features to be extracted
as the eigenvectors with the largest eigenvalues using nonpara-
metric weighted feature extraction (NWFE). The third stage
included: (1) supervised learning of the discrimination rules
and the corresponding background conditions (i.e., -values) in
a given learning time period, and (2) discrimination rules re-
organization according to the validation test performance for
constructing a hierarchical knowledge base . The final
stage consisted of computing the test sample’s membership de-
gree, computing the classification accuracy for recognized sam-
ples and calculating the rejection rate for unrecognized sam-
ples. At this stage, the test sample’s member degree was calcu-
lated by selecting one or several discrimination rules from the

satisfying the minimal confidence level (MCL) demand
at a given single sample average test time. The details of these
methods are outlined below.
1) EEG Preprocessing and Feature Extraction: Several

preprocessing operations were applied to the raw data before
submitting the data to the feature extraction and learning algo-
rithms. At first, all data were band-pass filtered offline using
elliptic filters from 0.3 Hz to 35 Hz implemented by MATLAB
software (The MathWorks, Natick, MA, USA). This is the
frequency range that is typically used in P300-based concealed
information detection studies [10]. To reduce the effect of large
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amplitude outliers due to eye movements, muscle activity,
or subject movement [31], a winsorization procedure [32],
[33] was applied. To do so, the 5th percentile and the 95th
percentile of the signals from each electrode were computed.
Values below the 5th percentile or above the 95th percentile
were replaced by the corresponding percentile values. The
min–max normalization method was then applied to EEG
signals to reduce variability. We applied the following equation
to where denotes a matrix that represents a
segment of EEG series, where , and denote the number
of channels, number of measurement samples, and number of
trials, respectively.

(1)

where is the normalized data matrix, is the original data
matrix and and are the upper and lower normalization
bounds respectively. Equation (1) maps the data matrix into
a bound between 0 and 1. We also compared the results for a
bound between and 1 (see Fig. 4). Finally, the continuous
EEG signals were separated into epochs corresponding to
number presentation. Each epoch was one second long; blank
intervals were removed. Epochs containing eye blinks in the
vertical EOG channel (i.e., potentials above 400 V) were
discarded.
Before classification, we applied a nonparametric weighted

feature extraction (NWFE) [25], [26] on the previously prepro-
cessed signals in order to extract the meaningful information.
Linear discriminant analysis (LDA) is one of the classical
methods for feature extraction and dimensionality reduction
that transforms data into a new feature space in which the
data has optimal discriminability. NWFE is an LDA-based
nonparametric feature extraction method proposed by Kuo and
Landgrebe [25]. Compared to parametric discriminant analyses,
nonparametric scatter matrices are generally of full rank which
provides the ability to specify the number of extracted features
desired and to reduce the effect of the singularity problem. On
the other hand, the nonparametric nature of scatter matrices re-
duces the effects of outliers and works well even for nonnormal
datasets [25]. In particular, NWFE assigns greater weights to
samples near the expected decision boundary. This method
extracts fewer features to represent the EEG data distribution
and generally performs well, e.g., in studies of EEG-based
driver’s cognitive response classification [26], EEG-based
driver’s cognitive state assessment [27], and EEG-based pas-
senger’s motion sickness level classification [28]. However, to
our knowledge, there is no relevant literature using NWFE for
feature extraction in EEG-based concealed information tests.
The main idea of NWFE is to put different weights on every
sample to compute the “weighted means”, and to compute the
distance between samples and their weighted means as their
“closeness” to a boundary, and then to define between-class
and within-class scatter matrices nonparametrically which
places large weights on the samples close to the boundary and
de-emphasizes those samples far from the boundary. In our
experimental data, there are two classes, EEG recordings re-
lated to birthday and nonbirthday numbers. The nonparametric

within-class scatter matrix and between-class scatter
matrix for L classes was defined as follows:

(2)

(3)

where denotes the prior probability of class is training
sample size of class , and refers to the th sample from
class . denotes the scatter matrix weight which is a func-
tion of and :

(4)

where denotes the Euclidean distance from to . If
the distance between and is small, then its weight
will be close to 1; if the distance is large, will be close to 0.
The sum of for class is 1. denotes the weighted
mean of in class and is defined as

(5)

where

(6)

is the weight of a sample in class corresponding to in
class . Similarly, if the distance between and is small,
then its weight will be close to 1; if the distance is large,

will be close to 0. Again, the sum of for
is 1.
The extracted features (eigenvectors with largest eigen-

values) were determined by following matrix:

(7)

2) Hierarchical Knowledge Base With Time Constraint
Construction: We added a time limitation for the

HKB construction based on our previous work [34].
Definition 1: Discrimination rule with time. A discrimination

rule is a 4-tuple defined as follows:

(8)
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where is the set of features, is the number of nearest neigh-
bors corresponding to the largest -value as determined through
-NN classification, represents the agreement when
using Cohen’s kappa [35] under and , and is the elapsed
time when the discrimination rule is used.
Definition 2: Hierarchical knowledge base with time. Let
be a discrimination rule. A hierarchical knowledge base
is defined as a sequence:

(9)

such that for , and . is the
number of discrimination rules.
From the above definitions, we can see that a hierarchical

knowledge base with time is composed of all discrimination
rules sorted by accuracy and time.
The construction algorithm is shown as follows. The Eu-

clidean distance was used as the distance metric in the -NN.

During the validation learning, the kappa coefficient was used
to record the best ‘ ’ corresponding to the highest kappa value.
Note that the goal of this algorithm was not to learn a functional
relationship, but a set of discrimination rules. Then, a hierar-
chical knowledge base was constructed by ranking the
discrimination rules according to the kappa agreement ‘ ’.
3) Classification Test: Since human decision-making in real

life is always limited by available information, available time,
and the information-processing ability of the mind, decisions in-
evitably require approximations, i.e., the decision-making is not
done in full confidence. In order to quantify the degree of this
confidence, we use a minimal confidence level (MCL) measure
[34] in our classification test algorithm. The higher the MCL,
the stricter the requirements for accepting a result as being cor-
rect, and vice versa. In order to evaluate the learning design,

we compare the real sample label of an unseen sample to the
classification result of our algorithm based on the best feature
level ‘ ’.

In Algorithm 2, for each test sample from the test set, we re-
cursively classify the sample into the majority class and com-
pute its membership using a -NN classifier at a given single
sample average test time. In each loop, the parameter and
the “nearest” feature samples come from which is se-
lected using a up-bottom search strategy. Finally, a label is as-
signed to the test sample satisfying the minimal confidence level
(MCL) demand in the given single sample test time. Further-
more, the algorithm computes the classification accuracy for all
recognized samples. For those test samples whose memberships
are below the given MCL (the samples are called unrecognized
samples), the algorithm computes the rejection rate.
In summary, a nonparametric weighted feature extraction

method was employed for EEG signal feature extraction. Then
through supervised learning, the discrimination rules along
with the corresponding k-values were stored, and through
ranking the discrimination rules according to validation tests,
a was constructed (see Algorithm 1). Finally, given
an unseen EEG sequence, the algorithm chose one or several
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Fig. 2. Grand means of event-related potentials for critical items (solid lines) and noncritical items (dotted lines) on Fz, Cz, and Pz electrodes. The critical wave-
forms represent an average of 30 stimulus presentations, and the noncritical waveforms represent 120 stimulus presentations for each experimental run.

Fig. 3. Classification accuracy (black crosses) and runtimes (gray up-
ward-pointing triangles) obtained for all possible combinations of channels
across all subjects, different normalization techniques, and different MCL
values (0 0.2 0.4 0.6 0.8 1).

discrimination rules from the using a top-down search
strategy and calculated classification accuracy and rejection rate
(see Algorithm 2). Classifiers used in the above two algorithms

Fig. 4. Classification accuracy obtained for different normalization techniques
across different MCL values (0 0.2 0.4 0.6 0.8 1) from electrode Pz. Every trial
was then winsorized for each subject. With a 90% winsorization, the highest
and the lowest 7–19 trails as outliers were replaced.

are all -NN, but in Algorithm 2 the degree of membership of
test sample is also estimated. A higher value of indicates a
higher confidence level for the estimated label.
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Fig. 5. (a) Classification accuracy and (b) rejection rate obtained for different MCL values from electrode Pz using minmax normalization across all
subjects with SLT ms and STT ms.

III. EXPERIMENTAL RESULTS

If the subjects have the relevant information (critical item)
stored in their brain and they focus on the information present,
the specific ERP component (P300) is different for the critical
item compared to the noncritical item [2], [3], [9]. Hence we ex-
pected that the responses to the birth date year, regarded as the
critical item in CIT, would contain a P300 component, whereas
other responses would not. We used the average overall signal
sampled from the onset of the stimulus (time 0) to the stimulus
offset, and we did obtain the P300 wave. Fig. 2 presents the
average EEG signals at electrode sites Fz, Cz, and Pz for crit-
ical and noncritical items across all subjects (20 experimental
runs). The critical items and noncritical items were presented
30 and 120 times respectively for each experimental run and
the resulting averaged waveforms are presented. It can be seen
that P300 responses for critical items are significantly higher
than that for noncritical items within a time window from 300
to 800 ms

.
In order to show the performance of the proposed method,

a 5-fold cross-validation method was employed, that is, each
dataset from each subject was randomly divided into five mutu-
ally exclusive subsets, with one of the subsets being used as the
test set and the other four subsets merged to form the learning
set. This procedure was repeated five times and the average clas-
sification accuracy was reported. All the experiments of this sec-
tion were carried out individually for all eleven subjects.
In Fig. 3, we report the average accuracy and runtimes

(obtained using an Intel(R) Core(TM)2 Quad CPU Q9550
@2.83 GHz, 3.25 GB RAM) using 5-fold cross-validation for
all possible combinations of channels across eleven subjects.
It is noted that as the number of channels increases, the run-
times increase sharply from around 60 seconds to 175 seconds
(learning time for each sample SLT is set to 10 ms, and test

time for each sample STT is set to 0.5 ms), but the achieved
accuracies across four normalization and nonnormalization
techniques increase only marginally (from around 85% to
88%). Since the electrode Pz performed the best, we select Pz
as the target channel in the following results. Another consider-
ation is that one electrode would take less time to set up, which
would be more user friendly compared to multiple electrodes.
Fig. 4 shows the average classification accuracy obtained

from the 5-fold cross-validation. Four normalization techniques
` ' ` ' ` ’, and ‘ ’
[36]) were used and compared to nonnormalized data in our
study. We found that the accuracy of using ‘ ’
was clearly better than that of using the other normalization
techniques for all subjects.
Fig. 5 shows an example of the accuracy of classification

for all subjects and for the different minimal confidence levels
(MCL) ( ms and ms). We observed
that, for most subjects, the higher the MCL, the higher the re-
jection rate (the number of unrecognized sample increased);
however, lower MCL was prone to misclassification. Therefore,
the highest classification performance was obtained for medium
MCLs. Based on this observation, we set MCL to 0.4 and ex-
tended the learning time (LT) and test time (TT) to ensure that
all samples were recognized, i.e., rejection rate (RR) equals 0.
The results of this analysis are reported in Table I using elec-
trode Pz as the target channel. From the above experimental re-
sults we can draw several observations. As LT increased, dis-
crimination rules were obtained because more features were
included in Algorithm 1. In Algorithm 2, the longer the TT,
the lower the RR because seeking the optimized discrimination
rules from usually required more CPU time. For MCL,
the higher the parameter value, the more rigorous each classifi-
cation was. Under the same and MCL, a short test time
for single sample testing increased the probability of incorrect
classification. Also, as the number of samples for each subject
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TABLE I
SUMMARY OF FINAL FIVE-FOLD CROSS-VALIDATED PERFORMANCES OVER ALL ELEVEN SUBJECTS

increased, longer learning was required. We set LT and TT to
a large number as the initial value in order ensure that our al-
gorithms had enough learning and test times ( ms
and ms). Parameters Actual SLT and Actual STT de-
note the actual learning time per sample and actual test time
per sample, respectively. Table I shows the Actual STL was no
more than 20 ms, but STT was far less than 5 ms. After careful
analysis of algorithm 2, we discovered that the test procedure
stopped as soon as condition or

was true. We found that in most cases the test loop
stopped when . The computation time (CT) represents
the total time cost for each subject. As seen in Table I, subject
4 had the best classification accuracy %
with the largest size (75.2) and subject 11 had the lowest
accuracy % with the lowest
size (25). We achieved an overall accuracy of %
with seconds. The accuracy could be improved by
addingmore channels, however, as shown in Fig. 3, the accuracy
would not improve much, while the time costs would increase
sharply.

IV. CONCLUSION

Exhaustive searches for global optimization are inappropriate
most of the time, while, fast or real-time decision-making based
on limited information could be more useful and necessary in
forensic investigations. In this work, we developed a simple
and feasible hierarchical knowledge base construction and test
method for a concealed information test (CIT) based on ob-
jective EEG measures. Based on a speed-accuracy trade-off,
discrimination rules were learned and structured into a knowl-
edge base in a given learning time, then during the classification
stage, the rules were selected to make a decision for a novel
sample given a certain test time while ensuring certain confi-
dence levels. The proposed method was successfully applied to

an autobiographical concealed information test paradigm with
high classification accuracies and low computation time that
would be acceptable for real-time applications requiring only
one electrode. The present study suggests that further develop-
ment is worthwhile, and would provide assistance to forensic
investigations in the future.
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