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Murdison TS, Leclercq G, Lefèvre P, Blohm G. Computations
underlying the visuomotor transformation for smooth pursuit eye
movements. J Neurophysiol 113: 1377–1399, 2015. First published
December 4, 2014; doi:10.1152/jn.00273.2014.—Smooth pursuit eye
movements are driven by retinal motion and enable us to view moving
targets with high acuity. Complicating the generation of these move-
ments is the fact that different eye and head rotations can produce
different retinal stimuli but giving rise to identical smooth pursuit
trajectories. However, because our eyes accurately pursue targets
regardless of eye and head orientation (Blohm G, Lefèvre P. J
Neurophysiol 104: 2103–2115, 2010), the brain must somehow take
these signals into account. To learn about the neural mechanisms
potentially underlying this visual-to-motor transformation, we trained
a physiologically inspired neural network model to combine two-
dimensional (2D) retinal motion signals with three-dimensional (3D)
eye and head orientation and velocity signals to generate a spatially
correct 3D pursuit command. We then simulated conditions of 1) head
roll-induced ocular counterroll, 2) oblique gaze-induced retinal rota-
tions, 3) eccentric gazes (invoking the half-angle rule), and 4) opto-
kinetic nystagmus to investigate how units in the intermediate layers
of the network accounted for different 3D constraints. Simultane-
ously, we simulated electrophysiological recordings (visual and motor
tunings) and microstimulation experiments to quantify the reference
frames of signals at each processing stage. We found a gradual
retinal-to-intermediate-to-spatial feedforward transformation through
the hidden layers. Our model is the first to describe the general 3D
transformation for smooth pursuit mediated by eye- and head-depen-
dent gain modulation. Based on several testable experimental predic-
tions, our model provides a mechanism by which the brain could
perform the 3D visuomotor transformation for smooth pursuit.

smooth pursuit; visuomotor transformation; reference frames; List-
ing’s law; retinal motion; artificial neural network

EVERY DAY, we perform smooth pursuit eye movements to
foveate objects moving across our visual field, allowing our
brain to process characteristics of those objects with high
acuity. Smooth pursuit initiation is predominantly driven by
the two-dimensional (2D) velocity of the target across the
retina, i.e., retinal slip (e.g., Ilg 2008; Ilg and Thier 2008;
Krauzlis 2004; Lisberger 2010; Orban de Xivry and Lefèvre
2007). However, as it is usually the case that eye and head
orientations are not perfectly aligned in space, the brain must
account for three-dimensional (3D) eye-head geometry to pro-
duce spatially correct pursuit from 2D retinal slip (Blohm and
Lefèvre 2010). For example, during head roll toward the

shoulders the eyes counterrotate (in the opposite direction) by
a small amount—a phenomenon known as ocular counterroll
(OCR). As a result, the target’s retinal projection is rotated
relative to the direction that the extraocular muscles (attached
to the skull) need to move the eyes to minimize retinal slip,
therefore requiring that the brain accounts for 3D eye-in-head
geometry for spatially correct pursuit, as depicted in Fig. 1A
(see METHODS for details). Blohm and Lefèvre (2010) recently
showed that we initiate spatially correct smooth pursuit move-
ments taking the 3D head and eye-in-head orientations into
account (see METHODS for details). Thus the central nervous
system (CNS) interprets each of these signals in a geometri-
cally correct way when transforming 2D retinal velocity into a
3D eye velocity command, while also obeying the behavioral
constraints of Listing’s law (e.g., Crawford et al. 2003). This
means that the CNS generates different spatially correct
smooth pursuit motor commands from the exact same retinal
input, depending on the 3D eye and head orientations. How-
ever, exactly where and how populations of neurons in the
brain perform this sensory-to-motor transformation is unclear.
Furthermore, no model predictions exist regarding what neural
properties electrophysiologists might expect to find when re-
cording from areas involved in the 3D visuomotor velocity
transformation for smooth pursuit.

In general, visual inputs to the pursuit system arise in the
primary visual cortex (V1) and are then projected through the
middle temporal area (MT) and medial superior temporal area
(MST) to parietal and frontal regions (Hawken et al. 1988;
Hubel and Wiesel 1968; Ilg 2008; Krauzlis 2004; Lisberger
2010; Maunsell and van Essen 1983; Movshon and Newsome
1996) as well as subcortical structures such as the superior
colliculus (SC) and the cerebellum (e.g., Ilg 1997, 2008; Keller
and Heinen 1991; Krauzlis 2004; Lisberger 2010; Lisberger et
al. 1987). Thus the visuomotor transformation for pursuit could
theoretically be carried out at any point throughout the pursuit
circuitry. However, it has been hypothesized that areas MT and
MST possess all the properties required to perform the visuo-
motor velocity transformation for smooth pursuit (Blohm and
Lefèvre 2010). For this reason, we modeled the inputs to our
network after the inputs to areas MT and MST.

MT and MST provide the primary visual input to the rest of
the pursuit circuitry, but their firing characteristics are distinct
from one another. In particular, neurons in MT are selective to
retinal velocity and position; that is, neurons in MT have
defined retinal receptive field (RF) locations and at each RF
location there are neurons tuned for retinal velocity (Albright
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1984; Gattass and Gross 1981; Ilg 2008; Inaba et al. 2007,
2011; Mikami et al. 1986; Newsome et al. 1988; Perrone and
Thiele 2001; Richert et al. 2013). Area MST receives direct
input from MT (Maunsell and van Essen 1983; Ungerleider
and Desimone 1986) but also receives input from frontal areas
that likely provide eye and head orientation information (e.g.,
Ilg 2008). In contrast to MT, it is thought that MST neurons
code visual motion stimuli in nonretinal (i.e., head centered,
spatial, or intermediate) coordinates (Chukoskie and Movshon
2009; Fujiwara et al. 2011; Inaba et al. 2007, 2011), which
might help generate a correct interpretation of visual informa-
tion for spatially accurate pursuit. It has therefore been hypoth-
esized that MT and MST are involved in the visuomotor
transformation of retinal signals (Blohm and Lefèvre 2010;
Bremmer et al. 1997; Lisberger and Movshon 1999).

While the visual tuning properties of areas MT and MST are
relatively well understood, there is a dearth of empirical
evidence and model predictions regarding what electrophysi-
ologists might find regarding neural properties related to motor
tuning in MT and MST. Only a few studies have investigated
the motor tunings of neurons in area MT (Born et al. 2000;
Groh et al. 1997) and those of either the lateral (Thier and
Erickson 1992) or dorsal (Fujiwara et al. 2011; Komatsu and
Wurtz 1989) portions of area MST. This lack of both empirical
and theoretical evidence might have prevented neuroscientists

from fully understanding the neural mechanisms for the visuo-
motor velocity transformation underlying smooth pursuit.

Previous neural network studies of MT and MST have
provided theoretical predictions about how neurons in areas
MT and MST can be used to perform several 1D and 2D
aspects of the transformation, including detecting spatial head-
ing direction from optic flow (Cameron et al. 1998) and
reconstructing head- and world-centered target motion in 2D
(Dicke and Thier 1999) and how MT and MST cells can
interact to use target, eye, and background motion signals to
control smooth pursuit and suppress the optokinetic nystagmus
(OKN) in 2D (Pack et al. 2001), but none of these studies
modeled the general, 3D visuomotor transformation for the
initiation of smooth pursuit (Blohm and Lefèvre 2010), as we
do here.

In this study, we used a neural network modeling approach
to decipher the neural properties underlying the 3D visuomotor
velocity transformation for the initiation of visually guided
smooth pursuit. To do this, we used a 3D geometrical smooth
pursuit model to train a simple rate-based, feedforward net-
work model. We then probed the emergent network properties
by implementing several realistic experimental simulations,
each with different 3D requirements for the visuomotor trans-
formation, including 1) head roll-induced OCR, 2) oblique
gaze-induced retinal rotations, 3) eccentric gaze orientations

A                                                                      B

C                                                                      D

Fig. 1. Overview of predicted effects. A: head roll-induced ocular counterroll (OCR). During head roll, the eyes counterrotate by a small gain (10% here for
illustration purposes), causing misalignments between the spatial target direction (black) when projected onto the retina (red) and head-fixed (blue) axes. These
rotations must be accounted for by the brain; otherwise they lead to smooth eye movement trajectories rotated by OCR (�OCR, red arrow). B: oblique gaze-induced
retinal rotations. When the eyes pursue moving targets starting from orientations along an oblique gaze vector (along the 45° direction here), the retinal movement
vector becomes increasingly rotated (grayscale arrows) as a result of the spherical projection geometry of images onto the back of the eyes. These retinal rotations
predict pursuit vectors (red) that are rotated by this same angle (�) from each oblique orientation. C: half-angle rule. When the eyes pursue targets moving along
the horizontal direction at increasingly eccentric vertical gaze orientations (black �), Listing’s law requires that the axis of rotation has a torsional component
equal to one-half of the eccentricity (�/2, grayscale axes). If the eyes did not obey the half-angle rule, one might expect the axis of rotation to contain torsional
components orthogonal to the eccentricity of eye orientation (red �, light to dark red axes), as the retinal input remains constant regardless of vertical orientation
(single black retinal vector). D: optokinetic nystagmus (OKN). To pursue a target after OKN, the brain must perform a vector addition of the current gaze speed
(sg,0, green) and the retinal target speed (st,r) in order to reconstruct the on-screen target speed (ŝt,s).
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(invoking the half-angle rule), and 4) pursuit after OKN.
Meanwhile, we simulated electrophysiological recording tech-
niques (visual tuning and motor field tuning) and microstimu-
lation techniques. Using these simulations to assay the firing
properties of our artificial neurons, we then made testable
predictions about how neurons involved in the visuomotor
velocity transformation should respond to changes in retinal
and extraretinal inputs, as well as how their contributions to
pursuit output (i.e., their motor tunings) should change depend-
ing on the 3D requirements of the visuomotor transformation.
The implementation of these experimental simulations using
our network model therefore provides specific, testable predic-
tions about what neural properties electrophysiologists might
expect to find when recording areas thought to be involved in
the visuomotor velocity transformation for smooth pursuit,
such as in areas MT and MST.

METHODS

It has been shown that the brain performs a spatially correct
visuomotor reference frame transformation of retinal signals to head-
centered smooth pursuit commands using the kinematics of the eyes in
the head and the head relative to the shoulders (Blohm and Lefèvre
2010). The goal of this study was to reveal how populations of
neurons in the brain could combine retinal and extraretinal signals to
produce these motor commands. We did this by first training a
physiologically inspired artificial neural network model to produce
spatially accurate smooth pursuit from various eye and head orienta-
tions and velocities and then probing the network’s activation prop-
erties while it performed the transformation under different eye-head
geometries. By examining the activation properties of hidden layer
units (HLUs) in these simulations, we could reveal the coding mech-
anisms that lead to the transformation, ultimately enabling us to
compare our findings to those found in pursuit areas of the brain.

Neural Network Model Architecture

We modeled the brain’s 3D visuomotor velocity transformation for
smooth pursuit (Blohm and Lefèvre 2010) using a physiologically
inspired, four-layer feedforward neural network. Figure 2A illustrates
one example of the simulated pursuit task that we used to generate the
geometrically correct training set used to train the network. Figure 2B
shows a schematic of the network model’s architecture. Retinal
location and retinal slip information was provided to the network with
an area MT-like combined retinal target position and velocity input
signal (Gattass and Gross 1981; Richert et al. 2013). The eye and head
orientations and velocities required for a geometrically correct pursuit
command (Blohm and Lefèvre 2010) were also provided to the
network using neural activities coded in 3D push-pull coordinates
(Blohm 2012; Blohm et al. 2009; Fukushima et al. 1990, 1992; King
et al. 1981; Xing and Andersen 2000), representing eye and head
efference copy signals (Crawford 1994; Crawford et al. 2003; Klier et
al. 2007), which are not subject to proprioceptive delays that might
preclude these signals from being used in online processing of visual
signals (Wang et al. 2007). Thus a total of five input population
activities [Fig. 2B, left: 1) combined retinal position and velocity, head
2) orientation and 3) velocity, and eye 4) orientation and 5) velocity]
were then passed through two consecutive hidden layers, each con-
sisting of between 9 and 100 HLUs, depending on the desired network
size. The number of HLUs in the two hidden layers was equivalent for
each network size. The output layer consisted of a rotational eye
velocity command coded in 3D brain stem coordinates (i.e., with a
mixed vertical-torsional coding of eye orientation; Blohm 2012;
Blohm et al. 2009; Crawford 1994; Crawford et al. 1991; Crawford
and Vilis 1992; Suzuki et al. 1995), similarly to the input eye velocity

signal. Each layer was fully connected by weight matrices (win, wHL,
and wout) whose values were adjusted during training to minimize
output error. The input-output relationship for each HLU was sigmoi-
dal, mimicking the nonlinear transfer function of actual neurons (Naka
and Rushton 1966a, 1966b, 1966c):

a�x� �
1

1 � e�x (1)

Input activations were not put through this sigmoidal function, and the
transfer functions for output units were purely linear.

Inputs

Combined retinal position and velocity. We defined a population of
neurons to code for the retinal target position and velocity based on a
cyclopean eye representation (Blohm 2012; Blohm et al. 2009; Khok-
hotva et al. 2005; Ono et al. 2002; Ono and Barbeito 1982). This was
done because we were not interested in distance effects driving
vergence eye movements. Neuron RFs were placed at various eccen-
tricities about a circle, and each neuron had a preferred retinal
direction and speed (velocity). The neurons were distributed accord-
ing to these parameters (thus the neurons were distributed across 4
dimensions, i.e., horizontal/vertical position and velocity). Repre-
sented by gray dots in the retinal input panel of Fig. 2B, visual input
unit RFs were distributed across four eccentricities (0°, 5°, 10°, and
25°) and across eight linearly spaced polar angles (0° through 315° in
45° steps). At each unit’s RF location, the units’ motion response
functions had preferred velocities distributed across four speeds (5°/s,
20°/s, 45°/s, and 80°/s) and across eight linearly spaced directions (0°
through 315° in 45° steps). These eccentricities and speeds allowed
for reliable coding of our visual inputs, which had a maximum
eccentricity of 20° and maximum speed of 84°/s, since units’ tuning
functions had enough overlap so that for every possible retinal
position and velocity there was at least one input unit with an
activation of at least 0.7 (maximum activation � 1; minimum � 0).
The activation function for these neurons was determined such that
the activity of each neuron depended on the similarity of the retinal
input to the RF location and preferred velocity (i.e., the greater the
difference between the two, the lower the activation), mimicking the
visual motion responses of neurons in area MT/V5 (Albright 1984;
Mikami et al. 1986; Perrone and Thiele 2001):

ai � exp��
�px � xi�2 � �py � yi�2

2�RF
2 �exp��

��T � �i�2

2��
2 �

exp��
�log2�vT ⁄ vi��2

2�v
2 � (2)

where ai represents the normalized activation of unit i [value between
0 and 1, arbitrary units (a.u.)], p represents the horizontal (subscript x)
and vertical (subscript y) retinal target eccentricities (°), xi and yi

represent the horizontal and vertical eccentricities (°) of unit i’s RF
center, respectively, �RF represents the width of the unit i’s RF (°), �T

represents the retinal direction of target T (°), �i represents the
preferred retinal direction of unit i (°), �� represents the width of unit
i’s preferred direction tuning (°), vT represents the retinal speed of
target T (°/s), vi represents the preferred retinal speed of unit i (°/s),
and �v represents the width of unit i’s preferred speed tuning (a.u.).

The space between units coding for retinal position and the width
of the Gaussian RFs (�RF) increased linearly with eccentricity to
account for decreased visual acuity away from the fovea, given by the
piecewise Eq. 3:

�RF � min�1.2 � �x2 � y2, 20�°
(3)

Similarly, the space between units coding for retinal velocity in-
creased with speed; however, the response widths remained constant
both for the lognormal speed tuning (�v) and for Gaussian directional
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tuning (��), which were set to 1.25 (a.u.) and 45°, respectively. Note
that because retinal velocity drives smooth pursuit initiation (Rash-
bass 1961) neurons were not sensitive to zero retinal speed, leaving a
point of discontinuity at zero in our model. Accordingly, our training
set contained no trials with zero retinal speed. A total of 1,024 neurons
coded for the combined retinal position and velocity input space.

Eye-in-head and head-on-shoulders orientations and velocities.
We also coded for eye-in-head and head-on-shoulders orientations
and velocities required for the 3D visuomotor velocity transformation
for smooth pursuit (Blohm and Lefèvre 2010). For each of these
extraretinal inputs we converted the 3D angle vector orientation,
which describes rotations as angles about the vertical, torsional, and
horizontal axes (rx, ry, rz), into a six-dimensional array consisting of
input unit activities (Blohm 2012; Blohm et al. 2009; Keith et al.
2007; Smith and Crawford 2005), in an antagonistic push-pull ar-

rangement (Crawford 1994; Crawford et al. 2003; Fukushima et al.
1990, 1992; King et al. 1981; Klier et al. 2007; Xing and Andersen
2000). This resulted in six units coding for each 3D eye orientation,
head orientation, eye velocity, and head velocity. The activations of
each unit (a�,i) were computed in the following way (Blohm 2012;
Blohm et al. 2009; Keith et al. 2007; Smith and Crawford 2005):

a�,i � 0.5 �
ri

2 � r0
(4)

where the maximum angle (r0) of eye-in-head orientation was 50°, the
maximum angle of head-on-shoulders orientation was 75°, and max-
imum velocity of both eye and head was 100°/s. The orientation axes
for both eye orientation and eye velocity were rotated by 45° about the
vertical axis to account for the mixed vertical-torsional coding of eye

Fig. 2. Geometrical model and neural network model. A: single trial of the simulated pursuit task comprising our geometrical model used to generate retinal and
extraretinal signals for the training set. Using the depicted setup, the model computes the smooth pursuit command required to minimize the velocity of a
frontoparallel on-screen target, projected onto the retina, given various gaze positions, eye and head orientations, and velocities. In this illustration (from the
subject’s perspective), the x-axis (horizontal) points to the right of the subject, the y-axis (depth) points into the screen, and the z-axis (vertical) points toward
the ceiling. B: network model architecture. We trained a rate-based 4-layer (2 hidden), fully feedforward network model to produce 3D, spatially correct smooth
pursuit velocity commands (output layer) from 5 input populations: 1) 2D retinal position and velocity signals, 2) 3D eye-in-head orientation and 3) velocity
signals, and 4) 3D head-on-shoulders orientation and 5) velocity signals. All weight matrices (win, wHL, wout) were adjusted during training, and we trained 8
network sizes (9–100 units in each hidden layer).
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orientations seen in the brain stem neural integrator (Blohm 2012;
Blohm et al. 2009; Crawford 1994; Crawford et al. 1991; Crawford
and Vilis 1992; Suzuki et al. 1995).

Output

Eye-in-head velocity motor output. We had six output units repre-
senting the push-pull eye velocity motor commands (Crawford 1994;
Crawford et al. 2003; Fukushima et al. 1990, 1992; King et al. 1981;
Klier et al. 2007; Xing and Andersen 2000), and the network was
trained according to the activities of these six units (Blohm 2012;
Blohm et al. 2009; Keith et al. 2007; Smith and Crawford 2005). At
each training epoch, using Eq. 4, we computed the activities associ-
ated with the required 3D angular velocity vector (rx, ry, rz) from the
training set and compared those activities to the current output layer
activities. The maximum speed of output eye-in-head velocity (r0)
was 100°/s and, like the input coding for eye-in-head orientation and
velocity, the orientation axis was rotated by 45° about the vertical axis
to account for the mixed vertical-torsional coding of eye orientations
seen in the brain stem neural integrator (Blohm 2012; Blohm et al.
2009; Crawford 1994; Crawford et al. 1991; Crawford and Vilis 1992;
Suzuki et al. 1995).

Training Set and Training Method

Because the goal of our network model was to describe the neural
mechanisms underlying the visuomotor velocity transformation for
smooth pursuit, using a physiologically plausible set of retinal and
extraretinal signals to train our network was paramount. With this in
mind, we generated our training set using a 3D geometrical model
described previously elsewhere (Blohm and Crawford 2007; Blohm
and Lefèvre 2010; Leclercq et al. 2012, 2013a, 2013b) that adhered to
the known physiological and kinematic constraints (Blohm and
Lefèvre 2010) of head-free smooth pursuit eye movements. Figure 2A
shows the schematic of this geometrical model. We simulated a
pursuit task in which a subject pursued a point stimulus displayed at
various eccentricities and velocities on a frontoparallel screen, under
various head and eye orientations and velocities. Using this simulated
setup, we randomly generated over 800,000 training points such that
the full range of plausible eye, head, and retinal position and velocity
inputs and outputs was covered approximately uniformly within the
training set. For any given training point, our model assumed that 1)
we describe the transformation at a single moment in time; 2) we only
consider pursuit motor commands for the eyes (i.e., there was no head
contribution to the output gaze shifts); 3) the stimulus is moving on a
screen that is frontoparallel to the subject; 4) the desired gaze path is
also within that frontoparallel plane; and 5) we only consider version
pursuit movements and do not model vergence movements. The
training set therefore adhered to several physiological constraints,
including Donders’ law (Blohm and Crawford 2007; Glenn and Vilis
1992) and Listing’s law (Blohm and Crawford 2007), while account-
ing for the natural variability of head and eye orientations (Aw et al.
1996; Glenn and Vilis 1992; Goossens and Van Opstal 1997; Murdi-
son et al. 2013) and movements (Aw et al. 1996; Blohm and Crawford
2007; Tweed et al. 1992; Tweed and Vilis 1987, 1990). Details of
model implementation along with a dual quaternion MATLAB tool-
box can be found in Leclercq et al. (2013a, 2013b).

We used this 3D geometrical model to generate a training set
consisting of the retinal and extraretinal inputs and required eye
velocity output to train eight different network sizes (9, 16, 25, 36, 49,
64, 81, and 100 HLUs in each hidden layer). The inputs to the first
layer consisted of retinal, eye, and head orientation and velocity
signals, while the required output eye velocity signals were compared
to the fourth-layer activations. We batch trained each network using a
pseudo-Newton method with preconditioned gradient descent, which
encouraged faster training convergence by multiplying the weight
adjustments at each training step by a term that corresponded to the

sign of the mean squared error (MSE) gradient but was independent of
its value. The connections whose weights were adjusted during
training included those between layers 1 and 2, layers 2 and 3, and
layers 3 and 4 (i.e., connections adjacent to the hidden layers). The
number of training points used depended on the total number of
adjustable connection weights in each network to avoid overfitting. To
implement and train the neural networks we utilized the Neural
Network Toolbox (v6.0.4) within MATLAB 7.10.0 (R2010a) (The
MathWorks, Natick, MA) running on a Dell T7500 computer,
equipped with a 64-bit Intel Xeon X550 CPU (8-Mb cache, 2.66 GHz,
6.4 GT/s dual-channel QuickPath Interconnect, 24 GB RAM) and
running a Windows 7 (Professional Edition) operating system. Train-
ing lasted from under an hour (9-HLU network) to up to a few days
(100-HLU network). We stopped training when the maximum number
of epochs (500,000) was reached. Note that good network perfor-
mance based on test points not used for training (see RESULTS) verified
that our network was not overspecified, given the number of training
points we used in batch training.

Neural Network Analysis

We performed several analyses to assess the extent to which and
mechanisms by which our network model (and specifically our HLUs)
performed the visuomotor velocity transformation. These analyses
were similar to those used in previous work (Blohm 2012; Blohm et
al. 2009; Blohm and Crawford 2007; Bremner and Andersen 2012;
Buneo et al. 2002; Pesaran et al. 2006; Zipser and Andersen 1988).

Network performance. First, we assessed the performance of the
network models after training by ensuring that our network both
incorporated extraretinal signals and accounted for the physiological
constraints of Listing’s law when computing smooth pursuit move-
ment commands (Blohm and Crawford 2007; Blohm and Lefèvre
2010; Tweed et al. 1992; Tweed and Vilis 1990). We computed the
observed 3D compensation index, which indicates the extent to which
extraretinal signals were accounted for, to transform the retinal ve-
locity vector into the head-centered motor command (Blohm et al.
2009; Blohm and Crawford 2007). Briefly, the compensation index
was defined by the dot product between the actual, network-generated
3D eye velocity and the geometrically required 3D eye velocity (each
with reference to the retinally predicted movement). As such, a
compensation index of 0 represented network output movements that
were generated as if eye-head orientations were at 0, i.e., that none of
the geometry was accounted for. To ensure that our network obeyed
Listing’s law, we compared the torsional component of the output
rotational velocity with that predicted by the half-angle rule and also
computed the Listing’s law error by finding the magnitude of the
difference between the predicted and actual 3D velocity output vec-
tors (Blohm and Lefèvre 2010; Tweed and Vilis 1987). Together,
these methods ensured that our network both incorporated extraretinal
signals and accounted for the physiological constraints of Listing’s
law when computing smooth pursuit movement commands (Blohm
and Lefèvre 2010).

Visual receptive fields and velocity tuning curves. We visualized
the activation properties of our HLUs by computing their RF center of
mass (COM) locations (similar to a hot spot of unit activation at which
stimuli were presented for our simulations) and, for that location,
determining the retinal tuning across the entire velocity space (which
combines direction and speed) for each HLU, which we call the retinal
velocity tuning curves (VTCs). Using these VTCs, we determined the
preferred retinal velocity direction (visual PD) of each HLU by
computing the activity-weighted circular mean across all retinal ve-
locities (up to 90°/s).

Visual input properties: gain modulation and tuning shifts. We then
probed the emergent properties used by our network HLUs by ob-
serving how VTCs changed in response to changes to extraretinal
inputs during experimental simulations. The two main properties we
observed were gain fields and velocity tuning shifts. Gain fields were
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characterized by the up- and downmodulation of each unit’s VTC
with nonvisual inputs. The gains of each HLU were quantified with
regression analysis between the normalized extraretinal input and the
average activity in the VTC, as described by Eq. 5:

a�i,j � Gj �
Xi

max�	X	�
� intercept (5)

where �a represents the average activity across the entire retinal
velocity space (a.u.), the subscript i represents the dimension of the
current extraretinal signal (horizontal, vertical, or torsional), the sub-
script j represents the current HLU number, X represents the magni-
tude of the extraretinal signal (° or°/s), and Gj represents the gain
computed via regression analysis for unit j (a.u.).

We computed the gain Gj using Eq. 5 for each unit regardless of
whether there was also a shift in tuning resulting from extraretinal
changes, meaning that the term G captured any modulatory behaviors,
not only those that were gain field-like. In contrast, tuning shifts were
characterized by modulations of VTCs in response to changes in
extraretinal inputs resulting in shifts of the HLU’s overall tuning
properties. We quantified these shifts using regression analysis be-
tween the change in extraretinal inputs and the shift of overall tuning
directions (compared to the tuning with zero extraretinal inputs).

Output properties: motor fields and simulated microstimulation. In
contrast with VTCs, which represented each unit’s response across
retinal velocity inputs, we also examined how each HLU’s activity
correlated with the network eye velocity output by computing the 3D
motor field of each unit (Blohm et al. 2009). The 3D motor field was
determined by the activity of each HLU across all possible 3D eye
velocity outputs, based on our complete geometrical model, such that
for each 3D eye velocity output (and given extraretinal signals) we
computed the corresponding retinal inputs. For each 3D motor field,
we computed the activity-weighted 3D motor field center of mass
(COMMF) and 2D preferred motor output direction (PDMF). The
COMMF was computed as the activity-weighted mean across each
velocity output axis. The PDMF was the activity-weighted circular
mean in the frontoparallel output plane, and thus ignored the effects of
torsional velocity output. We used the PDMF in reference frame
analyses of OCR and oblique gaze simulations because only rotations
of the 2D retinal information were required for spatially correct
compensation.

Additionally, simulated microstimulation of each unit allowed us to
examine how each unit contributed to the motor output while account-
ing for downstream connectivity. We simulated microstimulation-
induced evoked eye movements by creating circumstances in which
there would normally be no required network output (by fixating on a
foveated target and locating the probe at each unit’s retinal RF COM
location) and then setting the activity of each HLU to an artificially
high value (activation � 5) to ensure significant microstimulation-
induced movement vectors. We then computed the network 3D output
velocity command and repeated this procedure for every unit under
various simulated experimental conditions.

Experimental simulations. To see how the network model carried
out the transformation for smooth pursuit, we simulated several
pursuit experiments (illustrated in Fig. 1), including 1) head roll-
induced ocular counterroll (Fig. 1A), 2) retinal rotations due to oblique
gaze positions (Fig. 1B), 3) adherence to the half-angle rule (Fig. 1C),
and 4) pursuit initiation during OKN (Fig. 1D). Overall, we used 10
different experimental simulations to describe the input (i.e., visual
tuning) and output (i.e., motor fields and microstimulation) coding
reference frames of HLUs in order to fully characterize the progression of
the visuomotor transformation through the network layers. This frame-
work ultimately enabled us to make testable predictions about the neu-
rophysiology underlying smooth pursuit eye movements.

First (see Fig. 1A), to determine the visual input reference frame of
HLUs, we examined the influence of simulated head roll-induced
OCR on the VTCs of each HLU. The transformation for smooth

pursuit is complicated by the addition of head roll, resulting in OCR.
The counterrotation of the eyes results in a misalignment between the
spatial, head-centered, and retinal target directions, as revealed by the
direction of the target when projected into each reference frame’s
coordinates (spatial, screen-centered frame as black dotted axis; head-
centered frame in blue; retinal frame in red). This misalignment
therefore requires that the brain accounts for head orientation and
OCR when transforming retinal slip into a pursuit command. Al-
though typically small in magnitude (e.g., static OCR between 6% and
16% of head roll on average; Murdison et al. 2013), with the dynamic
vestibuloocular reflex, ocular torsion can be as large as 70% of head
roll (Aw et al. 1996). Ocular torsion-related pursuit errors (Murdison
et al. 2013) and perceptual errors (Wade and Curthoys 1997) are
significant, and their (presence) absence indicates the (non)existence
of 3D eye orientation signals in the generation of motor commands
(Murdison et al. 2013) and in visual perception (Wade and Curthoys
1997). We investigated how the network accounted for these signals
by simulating head roll-induced OCR and mapping the directional
velocity tuning of HLUs, a method similar to electrophysiological
recordings from area MSTd under conditions of whole body static
roll-tilt (Fujiwara et al. 2011). We made predictions about how a unit
should change in response to extraretinal changes if that unit coded
information in different reference frames. For example, if an HLU
was coding according to a retinal reference frame (i.e., based solely on
retinal input), the tuning would be independent of extraretinal changes
and the retinal prediction would be rotated by the angle of OCR
(�OCR; exaggerated in Fig. 1A for illustration purposes), resulting in
an idealized regression gain of 0 between �OCR and VTC shifts.
However, if OCR is accounted for (head-centered hypothesis), then
the predicted gaze vector is equivalent to the spatial prediction since
the extraocular muscles are attached to the skull (VTC shift regression
gain equal to 1). Using a reference frame approach similar to the
visual tuning analyses, we determined the motor field reference
frames of HLUs by observing how motor fields varied under several
simulated experimental conditions identical to those used in the input
analyses. Specifically, we used regression analysis to compare be-
tween changes to the PDMF (representing each unit’s contribution to
the change in only the horizontal and vertical output velocity compo-
nents) and changes in head roll and head roll-induced OCR. Using
these same reference frame predictions, we performed multiple re-
gression analysis between head roll, OCR, and microstimulation-
evoked network output to determine the HLU output reference frames.

Second (see Fig. 1B), we simulated the effects of oblique gaze-
induced retinal rotations (i.e., with no actual eye-in-head torsional
component; Blohm and Lefèvre 2010). Oblique eye orientations result
in rotations of retinal input relative to space, without any accumula-
tion of ocular torsion (because eye orientations are within Listing’s
plane, i.e., the plane containing the rotation axes of all possible eye
orientations; Blohm and Lefèvre 2010; Crawford and Vilis 1991;
Tweed and Vilis 1990). This retino-spatial misalignment is demon-
strated in Fig. 1B; as the gaze becomes more eccentric in an oblique
(45°) direction, the retinal velocity vector becomes increasingly ro-
tated (�). Since this is an effect of projecting frontoparallel planes onto
a spherical retina without any actual ocular torsion, the brain must
have an internal model of this effect induced by oblique eye orienta-
tions in order to compensate for these distortions when planning
pursuit movements. Conversely, if the brain were to carry out the
transformation based solely on retinal information (and did not use
eye orientation signals), this would result in eye movements that are
rotated by � relative to the spatial target direction. Note that for
demonstration purposes the predicted pursuit trajectory errors in Fig.
1B are not drawn to scale. Here, we compared the shifts of the VTCs
with the retinal rotation angle at various oblique gaze positions using
regression analysis (Blohm 2012; Blohm et al. 2009; Blohm and
Lefèvre 2010). We also examined how HLUs compensated for the
rotations induced on the retina during oblique gaze positions by
comparing this rotation angle with the rotation of the PDMF (motor
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fields), as well as with the rotation across evoked network output
(microstimulation).

Third (see Fig. 1C), we used the predictions made by Listing’s law
and the resulting half-angle rule to investigate the input coding
reference frame of units. Listing’s law necessitates that the rotational
eye velocity axis contains a torsional “tilt” proportional to half the
angle of gaze eccentricity (�/2) in order to keep the eye orientation
axis within Listing’s plane, known as the half-angle rule (Blohm and
Lefèvre 2010; Crawford and Vilis 1991; Tweed and Vilis 1990). As
eccentricity increases, although the retinal input remains the same, the
required eye velocity axis tilts according to the half-angle rule. In Fig.
1C, these axes are drawn to scale such that red and grayscale axes
correspond to the pursuit velocity axes for matching vertical eccen-
tricities predicted either by the retinal hypothesis (red) or by the
half-angle rule (grayscale). However, if the network does not account
for the half-angle rule and simply uses retinal stimulation to drive eye
movements, it might be expected that the eye velocity axis does not
tilt at all, as would be the case for movements initiated from primary
position. In this analysis, we computed the predicted torsional com-
ponent of the output velocity, given by the half-angle rule with initial
eye orientations at various vertical eccentricities and compared the
torsional shift of VTCs with the required value by regression analysis
(Blohm 2012; Blohm et al. 2009; Blohm and Lefèvre 2010). We used
a similar approach under different eye orientation conditions in which
the half-angle rule specifies that the 3D output velocity axis have a
torsional “tilt” proportional to half of the gaze angle. Here, we used
regression analysis to compare this required torsional tilt both to the
torsional change in the location of each COMMF (representing each
unit’s motor field contribution to the change in 3D motor velocity
output) and to the required tilt to the change in evoked network output
(microstimulation).

Fourth (see Fig. 1D), we investigated the effects of retinal stimulus
speed under various eye velocities using a simulated OKN task with
a large visual field of motion. To initiate smooth pursuit under these
initial visual and gaze motion conditions, the brain must perform a
vector addition of the retinal target velocity (st,r) and gaze velocity
(sg,0) in order to estimate the speed of a screen-centered target
stimulus (ŝt,s) and finally execute a pursuit movement in response
(sg,f). In this analysis we computed each HLU’s activity at every
combination of retinal target velocity and eye velocity �10°/s to
examine the extent to which the activity of each HLU was modulated
by either target or eye velocity. Target and eye velocities were moving
either in the visual PD (positive speeds) or in the null direction (visual
PD � 180°; negative speeds), and we simulated every possible
combination of target and eye velocities by systematically varying
both the on-screen target speed and the contribution of the eyes to the
OKN. As such, the direction of the summed activity gradients across
all combinations of target and eye velocities indicated the extent to
which target and eye signals were coded separately (separable) or in
a combined fashion (inseparable). Twice this gradient sum is equal to
the separability index used in electrophysiological and network stud-
ies (Blohm 2012; Blohm et al. 2009; Bremner and Andersen 2012;
Buneo et al. 2002; Pesaran et al. 2006), and we used the same index
here (separability indices of 0° and 180° represented separable en-
codings of target and eye signals, while indices of 90° and 270°
represented inseparable, combined encodings of target and eye sig-
nals). However, we often found units that displayed multiple insepa-
rable coding schemes that offset one another, resulting in an incorrect
finding of a “separable” target-centered coding scheme. To overcome
this limitation, we first selected units that exhibited this behavior by
locating the target velocities of minimal and maximal activity. If the
absolute velocities were �30°/s apart (presumably indicating a non-
monotonic gradient direction), we split the velocity field from which
we sampled the characteristic gradient direction into two fields at the
maximum or minimum target velocity that was closer to the center of
the velocity range (i.e., at the target velocity that was not near the edge
of the field). The rest of the gradient analysis proceeded as previously

described, but with each of these particular units essentially counting
as two units with two gradient directions. In this way, we could
characterize the true separability of target and eye motion signals in
network units.

RESULTS

Network Performance

We first ensured that the network adequately performed the
3D visuomotor transformation. To do so, we first computed the
observed 3D compensation, which indicates the extent to
which the network used extraretinal eye and head signals to
transform the 2D retinal velocity into a 3D motor output for the
eyes (Blohm et al. 2009; Blohm and Crawford 2007; Blohm
and Lefèvre 2010). We then performed a regression analysis
between the observed 3D compensation and the predicted 3D
compensation, based on an ideal spatially accurate output for a
set of 10,000 test points previously unseen by the network,
subselected from the full training set (see METHODS). Results are
shown in Fig. 3 for a 100-HLU network, as well as the other
network sizes (regression fits only). Figure 3A shows that the
100-HLU network compensated for most of the extraretinal
signals, as the regression fit had a slope of 0.86 (and 
0.78 for
all networks) and the R2 value of 0.81 also indicated a strong
fit (R2 
 0.69 for all networks). Figure 3B shows the distribu-
tions of the 3D compensation errors (or the components or-
thogonal to the predicted 3D compensation vectors) and re-
veals that across all network sizes the mean errors were
relatively small (mean errors � 4.02°/s, SD of error � 3.09°/s).
While these compensation parameters indicate that the net-
works accounted for the extraretinal signals giving rise to a
spatially correct transformation, they do not necessarily ad-
dress the physiological plausibility of the network outputs and,
specifically, their adherence to Listing’s law and the resulting
half-angle rule. We computed this torsional component for
each network eye velocity output and compared it to the
torsional component required by the half-angle rule by regres-
sion analysis, revealing a slope of 0.998 and an R2 value of
1.000 for the 100-HLU network (slopes ranging from 0.998 to
1.001 and R2 � 0.998 for all networks), corresponding to a
narrow distribution of torsional error with absolute means �
0.03° and SDs � 0.94° for each network size, shown as a
histogram in Fig. 3C. Together, these analyses provide evi-
dence that the performance of the visuomotor transformation
for smooth pursuit, as observed in Blohm and Lefèvre (2010),
can theoretically be computed by the brain in a simple, dis-
tributed, feedforward way.

Network Analysis: General HLU Properties

To see how the network carried out the visuomotor trans-
formation, we needed to determine the relationship between
the inputs and outputs of the network’s HLUs. We used a
reference frame approach to essentially trace the gradual trans-
formation of information from a retinal reference frame to a
spatially correct, head-centered reference frame (Blohm and
Lefèvre 2010). We characterized the reference frames of in-
formation input to each HLU as well as those of information
output from each HLU with experimental simulations. For
example, if information input to a HLU were coded retinally
the activity of the HLU should be independent of changes to
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eye orientation input, and, contrastingly, if the input were
coded in a spatially correct way the HLU’s activity should be
modulated by eye orientation in a way that compensates for
these changes. Using this methodology, we performed exper-
imental simulations in which we altered the head and eye
inputs in order to deduce the input reference frames of each
HLU and the reference frames in which each HLU coded
motor outputs. Importantly, this simulation-based framework
allowed us to make testable predictions about the neurophys-

iological properties of areas involved in the visuomotor trans-
formation for smooth pursuit.

To do this, we simulated electrophysiological recording
studies, that is, we computed the activity of HLUs in our
network for different simulated experimental conditions, such
that we could create a map of the HLU activity dependent on
either retinal input or motor output. First, we mapped the visual
RFs of HLUs (i.e., the HLU response across all retinal posi-
tions). Then, at each RF location, we found the retinal velocity
tuning of each HLU from the activities across all possible
retinal velocities, leaving us with a retinal VTC for each HLU,
as presented in the centers of Fig. 4A, left and right, for
example units 85 and 72 from the first and second hidden
layers of the 100-HLU network, respectively. Thus, to deter-
mine the input reference frame of a unit, we examined how
VTCs were modulated by eye and head signals. We investi-
gated the output reference frame of units in two ways: we
examined both 1) how a unit’s activity alignment with motor
output (motor field) was modulated by eye and head signals
and 2) how each unit contributed differently to network output
when modulated by eye and head signals (simulated micro-
stimulation).

Input Properties: Retinal Velocity Tuning Curves

We first analyzed the emergent input reference frame of
HLUs in the second layer of the network (or the first hidden
layer). To do this, we determined each unit’s activity in
response to retinal velocity inputs and varied retinal velocity
across a range of retinal speeds from �0°/s to 45°/s and all
directions, while keeping all other inputs constant. For the units
in the centers of Fig. 4A, left and right, the retinal position was
centered on each unit’s visual RF, and all eye and head
orientation and velocity inputs were kept at zero (representing
the target at the center of the visual RF, the eye at primary
position, and the head in an upright position). Within each
VTC, we found the preferred retinal velocity tuning direction
(PD), the COM velocity, the maximum activity, and the min-
imum activity, which we used as topographical “landmarks”
for tracking modulations of the VTCs with eye and head input
changes. In both layers, VTCs were typically complex in
shape, often with more than one hill of activity and more than
one trough of activity (e.g., layer 1 unit 85).

The next step in determining the reference frame of the
inputs to each unit was to observe how it was modulated by
changes in extraretinal signals, such as eye velocity. More
precisely, we asked whether the VTCs were gain-modulated by
eye velocity, i.e., whether the eye velocity had an approxi-
mately multiplicative effect on the activity of the unit, regard-
less of the retinal velocity. For units in both hidden layers of
the 100-HLU network, we found evidence of such gain mod-
ulation. For instance, the activity of units 85 (Fig. 1A, left) and
72 (Fig. 1A, right) is gain-modulated by the eye velocity. For
those two units, we observed a constant PD and constant
locations of the activity COM, minimum, and maximum re-
gardless of eye velocity, but, in general, units can have both a
shift of their PD as well as a gain modulation of their activity.

The modulatory behaviors shown in Fig. 4A, left and right,
were typical of units in each layer, as illustrated in Fig. 4B, left
and right. In Fig. 4B, each box represents the overall gain range
of the activity modulation exhibited by the units in each trained

A

B

C

Fig. 3. Network performance. A: all network sizes adequately performed the
3D transformation, according to a regression analysis between the observed 3D
compensation index and the predicted 3D compensation index (Blohm and
Crawford 2007), based on 10,000 different test simulation points (previously
unseen by the network), shown here for only the 100-hidden layer unit (HLU)
network for clarity. Also shown are the regression fits (dashed color-matched
lines) for each network size. B: 3D compensation error, represented by the
component of the observed 3D compensation orthogonal to the predicted
compensation, revealed that all network sizes (color-matched stair histograms)
adequately minimized 3D error. C: distributions of half-angle rule velocity axis
“torsional tilt” error for each network size (color-matched stair histograms)
revealed that all networks adequately adhered to Listing’s law.
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network size (Fig. 4B, left and right, represent the first and
second hidden layers, respectively) with horizontal and vertical
eye velocities. The width of these boxes represents the maxima
and minima of the gain values, as determined by regression
analyses (see METHODS). Also shown in Fig. 4B are the hori-
zontal and vertical gains associated with the units in Fig. 4A
(units 85 and 72, respectively; white disks with black outlines).
Figure 4 reveals that although there was modulation of VTCs

in both layers across network sizes, this modulation was often
of greater magnitude (i.e., larger gains) in the first hidden layer,
although this was not necessarily the case for all networks.

Input Properties

In the first experiment, we asked how network units ac-
counted for the rotational misalignment that occurs between

Fig. 4. Gain modulation and visual tuning shifts. A, left: gain-modulated unit from the 1st hidden layer of the 100-HLU network (unit 85) with eye velocity gain
fields. Note that for all eye velocities the preferred direction (PD, white bar), center of mass (COM, white circle), minimum (downward magenta triangle), and
maximum (upward green triangle) remain in constant locations. Right: unit from the 2nd hidden layer of the 100-HLU network (unit 72) exhibiting eye velocity
gain fields. B, left: summary of gain modulation in the 1st hidden layers of each network size. In general, the 1st HLUs exhibited larger gain modulations than
units in the 2nd hidden layer (see B, right). Each box represents the minimum and maximum of gain modulation in the horizontal and vertical eye velocity
directions, and the color-matched histograms along the borders reveal the distributions of gain modulations for each network size. Note that this analysis only
accounted for fluctuations in overall activity (not tuning directions). Right: summary of gain modulation in the 2nd hidden layers of each network size. In general,
the 2nd HLUs exhibited smaller gain modulations than units in the 2nd hidden layer (see B, left). Conventions as in B, left. a.u., Arbitrary units.
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the retina and the extraocular muscles under conditions of head
roll-induced OCR. Figure 1A illustrates this misalignment.
Because the eyes rotate in the opposite direction of the head,
and the extraocular muscles are head-fixed, the direction of the
target velocity on the retina and the direction of eye movement
required to minimize that retinal slip are not spatially equiva-
lent (see METHODS). We thus tested whether the units in our
network coded for this OCR compensation by investigating
how visual PDs change across head roll and OCR. We show an
example of this analysis in Fig. 5A for typical first and second
HLUs (units 1 and 7, respectively) from the 100-HLU network.
To show the isolated effects of varying either head roll or
ocular torsion on the tuning properties of these units, we show
(inset polar-coordinate plots in Fig. 5A) the directional tuning

of these example units for each head roll/ocular torsion amount
across the zero-head/ocular torsional cross sections of the full
head roll-OCR space (i.e., we computed the PD at each head
roll/ocular torsion angle while keeping the other signal equal to
0, and the shift was the difference of these PDs from the head
and eyes at 0 torsion, for a constant retinal target speed of
20°/s). We then compared the magnitude of this PD shift with
that required for a spatially correct output (i.e., OCR angle) and
with the head roll angle using regression analysis. For the first
HLU (unit 1), the tuning curve was gain-modulated but there
was no significant shift of the tuning preference, resulting in a
regression gain close to zero, thus indicating that this HLU
coded in a reference frame that was approximately retinal.
Second HLUs’ PDs shifted in a way that was proportional,
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Fig. 5. Visual tuning properties. A: visual tuning modulations of typical units in the 1st (unit 1) and 2nd (unit 7) hidden layers of the 100-HLU network during
head roll-induced OCR: across head roll angles of �40° to 40° (pseudocolor plot, x-axis) and across ocular torsion angles of �28° to 28° (pseudocolor plot,
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for the 1st HLU (0.5° with head roll and 0.02° with OCR) and larger amounts for the 2nd hidden layer (8° with head roll and �8° with OCR). B: comparing
these shifts to those required to compensate for head roll and OCR (in red and blue for 1st and 2nd HLUs, respectively), we see that the shifts of the 1st HLU
indicate a nearly retinal coding (regression gains � 0, dashed lines) and the shifts of the 2nd HLU indicate an intermediate coding frame. This same analysis
was performed to observe unit-by-unit compensation for head roll. Also shown are the distributions of compensation gains across head roll and ocular torsion
for the 100-HLU network (gray histogram for 1st HLUs; black stair histogram for 2nd HLUs), with quartiles (tick marks representing 25%, 50%, and 75% gain
percentiles) for each layer of each network size above histogram (color-matched, with lighter shades corresponding to 1st hidden layer quartiles and darker shades
corresponding to 2nd hidden layer quartiles). This histogram and these quartiles show a consistent narrow distribution of 1st HLUs around the retinal gain (dashed
vertical), while 2nd HLUs show a consistently wider distribution, indicating more units coding to a frame intermediate to retinal and spatial (solid vertical). C
and D: summaries of compensatory gain distributions for HLUs in 1st and 2nd hidden layers during oblique gaze (C) and half-angle rule (D) simulations. These
distributions revealed consistent, retinal coding by 1st HLUs and intermediate coding by 2nd HLUs. Color scheme and plotting conventions are identical to those
in B.

1386 COMPUTATIONS UNDERLYING 3D PURSUIT TRANSFORMATION

J Neurophysiol • doi:10.1152/jn.00273.2014 • www.jn.org

on M
arch 1, 2015

D
ow

nloaded from
 



though not perfectly compensatory, for the torsional head and
eye signals. Depicted for a typical second HLU (unit 7) in Fig.
5A, bottom, this shifting behavior is indicative of a mixed
coding scheme for target motion, intermediate to both retinal
and spatial coordinate frames.

In the second experiment, we investigated how the HLUs
compensated for retinal rotations induced by oblique eye ori-
entations. When the eyes change orientation in the head to
direct gaze to an oblique (e.g., up and to the right) position, the
retinal projection undergoes a slight rotation as illustrated in
Fig. 1B. As such, the rotations of retinal input are nonlinear and
result from 3D properties of rotation (Blohm and Crawford
2007; Blohm and Lefèvre 2010) and also depend on head
movements (because of head movement-related changes to
Listing’s law). Thus the brain must account for the full 3D
geometry of the retina, eyes, and head to generate a spatially
correct pursuit movement from oblique gaze locations.

Using a methodology similar to that in the OCR simulation,
we compared the shifts of PDs for each HLU to the magnitude
of the retinal rotation induced by oblique eye orientations
ranging from eccentricities of 0° to 45°. We found the retinal
rotation by computing the angle between a horizontal unit
vector rotated from a 0° eye orientation (i.e., with no rotational
component) to each oblique position. We then used regression
analysis to compare the PD shifts to these values. Thus a
retinally coding unit would exhibit no PD shift for changes in
retinal rotation (regression gain � 0), whereas a spatially
coding unit would exhibit a fully compensatory PD shift
(regression gain � 1).

In addition to accounting for OCR and oblique eye orienta-
tions in the transformation, the network HLUs should also
account for the half-angle rule (Blohm and Lefèvre 2010;
Crawford and Vilis 1991; Tweed and Vilis 1990), as we
investigated in the third experiment. As presented in Fig. 1C,
for the pursuit of a horizontal stimulus starting from a vertical
eye orientation, the axis of rotation should be tilted (in the
torsional direction) by half of the angle of vertical eccentricity.
Although the retinal input is identical for each of these eye
orientations (see inset retinal projection, Fig. 1C), the motor
requirements differ. Therefore, in order for the pursuit com-
mand to obey Listing’s law, this torsional tilt must be ac-
counted for in the visuomotor transformation.

Similar to the OCR and oblique gaze simulations, we used
regression analysis to compare the PD shifts for each HLU to
the torsion predicted by the half-angle rule at various vertical
eye orientation eccentricities (equivalent to half the angles of
eccentricity, accordingly). Accordingly, retinally coding units
should exhibit a regression gain of 0. On the other hand, the
preferred tunings of spatially accurate coding units should shift
by the required torsional velocity. However, because the half
angle tilt directly influences the motor command output (rather
than influencing the retinal input), spatially compensatory shifts of
visual PDs were represented by regression gains of �1.

Input reference frame analyses for experiments 1, 2, and 3.
Because head roll and OCR are correlated in our training set
(R2 � 0.83), both signals can provide information about OCR,
despite the fact that head roll itself is irrelevant to the visuo-
motor transformation for smooth pursuit. Indeed, technically
only knowledge about OCR is needed for spatially accurate
pursuit, as illustrated by Fig. 1A. However, because of this
correlation, we performed a multiple regression analysis to

identify head roll and OCR gains. As shown in the pseudocolor
plots in Fig. 5A for units 1 and 7, the shifting of units’ visual
PDs remained constant for most units within the first hidden
layer (e.g., unit 1) or varied monotonically across the full head
roll-ocular torsion space for units within the second hidden
layer (e.g., unit 7).

We determined the head roll- and OCR-related compensa-
tory gains for HLUs in each layer and plotted their distributions
with the retinal prediction in Fig. 5B. The gains of multiple
regression terms corresponding to head roll and ocular torsion
indicated that when the spatial transformation required the
network to use head roll and/or OCR signals, the first HLUs
(HL1) were coding almost exclusively according to a retinal or
nearly retinal input reference frame, whereas the second HLUs
(HL2) were coding according to both a retinal frame and an
intermediate input reference frame. Group-level t-tests on me-
dian gains agreed with this observation, as median ocular
torsion gains were not significantly different from 0 {first
hidden layer: t(7) � 1.12, P � 0.30, 95%CI [�0.002, 0.006];
second hidden layer: t(7) � 1.62, P � 0.15, 95%CI [�0.02,
0.09]}. Qualitatively, for all networks the interquartile gain
distances were larger in the second hidden layers than in the
first hidden layers for both head roll and ocular torsion,
suggesting that there were also units coding visual inputs
according to an intermediate reference frame in the second
hidden layers of each network; however, this finding could not
be confirmed with group-level statistical tests.

We found that units within the second hidden layer often
coded for a compensation for head roll in addition to OCR (r �
0.70, P � 0.001), even though OCR was the only signal for
which the network had to explicitly compensate. This finding
suggests that these units were able to (at least partially) learn an
internal model of the head roll-OCR interaction. Furthermore,
the combined use of head roll and ocular torsion signals might
explain why neither signal independently produced statistically
detectable intermediate coding of visual inputs (i.e., strong
compensatory shifts) in our second hidden layers. Therefore,
when retinal signals are rotated relative to the head because of
OCR (Blohm and Lefèvre 2010), this analysis reveals that first
HLUs code visual inputs according to a retinal frame and
suggests that second HLUs code visual inputs according to
both retinal and mixed reference frames, intermediate to retinal
and spatial.

In each of the other two experiments (oblique eye orienta-
tions and half-angle rule), HLUs exhibited input coding frames
consistent with and behaviors qualitatively similar to those
found in the head roll-OCR simulation, as shown in the
histograms in Fig. 5, C and D (following the same conventions
as Fig. 5B). However, when comparing the first and second
hidden layer interquartile gain distances, for all networks and
for both experiments we found significantly larger distances,
strongly suggesting an intermediate coding of visual signals in
the second hidden layer {oblique eye orientations: t(7) �
�10.0, P � 0.01, 95% CI [�1.35, �0.83]; half-angle rule:
t(7) � �7.47, P � 0.01, 95% CI [�0.76, �0.39]}.

Experiment 4: visual tuning effects of target and eye speeds
during optokinetic nystagmus. For the pursuit system to cor-
rectly interpret the motion of a target in space and subsequently
pursue it (Blohm and Lefèvre 2010), it must ultimately perform
a vector addition of retinal target signals and eye movement
signals. However, it is unclear how 2D retinal signals and 3D
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eye movement signals might be combined in the brain. Here
we simulated an OKN experiment (Archer et al. 1987; Fox et
al. 1978; Wolfe et al. 1981) in which a large, textured visual
stimulus was displayed moving at various speeds in a direction
either parallel to the PD of the unit or in a direction exactly
opposite (PD � 180°) while the participant underwent OKN,
with gaze near the center of the background stimulus at various
speeds in the same direction, as illustrated for a positive speed
(parallel to PD) in Fig. 1D. In this imagined task, we specified
that participants would then be asked to pursue a new target,
interrupting OKN, although this final part of the simulated task
is unimportant for investigating how the brain might add
together retinal target motion and 3D eye motion in order to
reconstruct spatial target motion.

We computed the separability index of our network HLUs,
which captures the extent to which inputs are coded by units in
either a combined (inseparable) or separable (independent)
fashion, based on previous electrophysiological and network
studies (see METHODS; Blohm 2012; Blohm et al. 2009; Brem-
ner and Andersen 2012; Buneo et al. 2002; Pesaran et al.
2006). The pseudocolor plots presented in Fig. 6, A and B,
show this analysis for 4 example HLUs from the 100-HLU
network (units 74 and 23 from the first hidden layer, Fig. 6A;
units 38 and 72 from the second hidden layer, Fig. 6B); in these
plots, we show the normalized, color-coded activation of each
unit across all combinations of target (x-axis) and eye veloci-
ties (y-axis) for target velocities in the PD � 180° (left) and in
the PD (right). Examining the change in activation of each unit
across each axis reveals the dependence on either target or eye
speed. For example, units 74 and 23 in Fig. 6A show a strong
dependence on target speed, appearing as gradients in the
horizontal (0°) direction, while unit 72 in Fig. 6B showed a
distinct separability for each target velocity direction. In the
null (�) direction this unit showed strong target speed depen-
dence, while in the preferred (�) direction it showed strong
eye speed dependence (180°). Granted, these gradient direc-
tions were not perfectly separable for each unit, indicating
some eye speed dependence. Additionally, unit 23 displayed
modulation gradients resulting from combined target-eye cod-
ing but in opposite directions, resulting in a gradient direction
of 0° that appeared purely separable when in truth it was not
(see METHODS for details). To overcome this limitation in these
particular units, at the target velocity of minimal or maximal
activity (as one of these locations typically represented the
border between each gradient direction) we split the velocity
field from which we sampled the characteristic gradient direc-
tion into two fields. Finally, unit 38 in Fig. 6B shows insepa-
rable coding in both compensatory (T-E; �45° gradient) and
anticompensatory (T�E; �45° gradient) ways, depending on
the direction of the target velocity.

In Fig. 6, C and D, we show the distributions of the
separability indices for each layer (Blohm 2012; Blohm et al.
2009; Bremner and Andersen 2012; Buneo et al. 2002; Pesaran
et al. 2006). Each polar histogram is labeled at 0°, 90°, 180°,
and 270° as coding for retinal target motion (T), coding in an
anti-compensatory way (T�E), coding for eye motion (E) and
coding in a compensatory way (T-E), respectively. Figure 6C
shows that first HLUs showed a mostly separable (target)
coding, whereas many second HLUs (Fig. 6D) exhibited some
target coding but with a large proportion of units displaying
inseparable coding, intermediate between purely retinal (T)

and spatially accurate (T-E). Finally, this gradient analysis
revealed very few units in the first hidden layer and some units
in the second hidden layer coding motion inputs in a spatially
correct fashion (T-E), which is consistent with other visual
input simulations (see Fig. 6B, Fig. 7, and Fig. 8). Group-level
t-tests on the average gradient directions across network sizes
suggested a retinal coding in the first hidden layer {t(7) � 1.00,
P � 0.35, 95% CI [�7.80, 19.1]} but not as strongly in the
second hidden layer, as given by its wide 95% CI {t(7) � 1.29,
P � 0.24, 95% CI [�37.0, 125]}, with average gradients for
the first hidden layer from �9.8° (16-HLU network) to 38.3°
(25-HLU network), although this mean gradient was not rep-
resentative of the unit gradients [see Fig. 9: t(99) � 2.09, P �
0.05], and average gradients for the second hidden layer from
�133.4° (49-HLU network) to 144.5° (25-HLU network). In
the first hidden layer SDs ranged from 59.5° for the 100-HLU

A                                     C

B                                     D

Fig. 6. Visual tuning properties: OKN separability analysis. A and B: retinal
target speed vs. eye speed normalized activity gradients for 2 typical target-
dependent (T) units in the 1st hidden layer of the 100-HLU network (units 74
and 23, A) and 2 units in the 2nd hidden layer (units 38 and 72, B) with both
separable (T and E) and inseparable (T-E and T�E) characteristics. Because
zero retinal velocity induced zero eye movement vectors, we started the
gradient analysis at speeds �10°/s and analyzed positive and negative target
speeds separately. C and D: direction-binned polar histograms showing the
distribution of gradients in 1st (C) and 2nd (D) HLUs. The colored radii
indicate the mean gradient directions for each network, and the dashed radius
(for 1st hidden layer of 25-HLU network) represents a mean gradient from
which unit gradients were significantly different [t(99) � 2.09, P � 0.05].
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network to 98.1° for the 25-HLU network, while in the second
hidden layer SDs ranged from 88.6° for the 100-HLU network
to 111.1° for the 9-HLU network. These results suggest that,
although the first HLUs typically coded in a retinal, target-
dependent fashion, the second HLUs also exhibited a depen-
dence on eye speed, indicating a nonretinal, intermediate code.
We discuss these results in greater detail and their implications
for pursuit-related areas of the brain in DISCUSSION.

To this point, our simulated electrophysiological experi-
ments have revealed converging findings concerning the input
reference frame of our network HLUs: 1) first HLUs code
inputs almost exclusively according to a retinal reference frame
with mainly separable retinal and eye motion signals, and 2)
second HLUs code inputs according to both a retinal reference
frame and an intermediate reference frame with inseparable
motion coding.

Output Properties: Motor Fields

We next sought to determine the reference frames in which
HLUs code motor output. One might assume that units’ visual
and motor tuning should be aligned in a network performing
visuomotor transformations (such that the input and output
reference frames would be the same); however, there is evi-
dence supporting the idea that network units involved in
visuomotor transformations code visual input and motor output
tunings according to different reference frames (Blohm 2012;
Pouget and Sejnowski 1997; Salinas and Abbott 1995), i.e., if
a unit is involved in transforming information, then the input
and output codes should differ.

For example, one can consider head roll-induced OCR. As
we investigated earlier in the context of visual input tuning
properties, units must be modulated by head roll-induced OCR
in order to compensate for the spatial misalignments between
retinal input and the required pursuit output. We can take an
alternative approach as well, noting that the network’s motor
output vector (its motor contribution) must also compensate for
spatial misalignments between retinal velocity input and the
required pursuit output. We computed how each unit’s activity
was correlated with the 3D motor output, known as the motor
field of each unit (Blohm et al. 2009; Keith et al. 2007; Smith
and Crawford 2005). To discern motor field reference frames,
we mapped units’ motor fields and determined how they were
modulated specifically by head roll-induced OCR, oblique
gaze, and the half-angle rule.

In contrast to VTCs, which specified the activation of units
to every possible 2D retinal velocity, the motor field is each
unit’s activity for every possible motor output, spanning all
three spatial dimensions. Essentially, motor fields describe the
motor output tuning of each neuron. As such, we can examine
how the motor field of each unit changes with eye and/or head
inputs in order to see the unit’s motor field reference frame.
Figure 7 presents the motor field for an example unit from the
first hidden layer (unit 16) of the 100-HLU network. Unit
activations are shown in 3D, head-fixed space as viewed from
behind (Fig. 7A, top left, frontoparallel horizontal-vertical
plane), from below (Fig. 7A, bottom left, transverse horizontal-
torsional plane) and from the side (Fig. 7A, top right, sagittal
vertical-torsional plane). Because the same motor outputs
can be produced from an infinite combination of inputs,
activations were binned based solely on motor output—

collapsing across all retinal, eye, and head input signals
giving rise to that output. This resulted in a distribution of
activities for each bin, and in Fig. 7A we present the
color-coded average activities within each bin. In this way,
each viewpoint of the motor field resembled the unit’s true
output-aligned activation. We also summarize the activation
profile along each axis in the plots adjacent to each pseudo-
color plot axis in Fig. 7A (error bars represent SE across
each dimension). To capture the three-dimensional preferred
motor tuning of each unit, we computed the activity-
weighted 3D motor field center-of-mass (COMMF), which is
represented in Fig. 7A as a white disk. We also computed the
2D frontoparallel motor field (by averaging across torsional
output velocities), which we show in Fig. 7B plotted on
polar axes for the same HLU (unit 16). Note that the tuning
shown in the 2D frontoparallel motor field is representative
of the tuning for the frontoparallel plane (Fig. 7A, top left).
The red bar in Fig. 7B represents the preferred motor tuning
direction of this unit (PDMF), and the black bars represent
the SD of activity for each directional output bin.

When determining the motor field reference frames of units,
we examined how shifts either of the COMMF or of the PDMF
accounted for the spatial requirements of the visuomotor trans-
formation, analogous to how we used shifts of the preferred
visual tuning to delineate the input reference frames of units. In
this section we review the findings of three experimental
simulations that we used to find the motor field reference frame
of each HLU, each representing the corresponding simulation
performed in Input Properties.

Motor field reference frame analyses for experiments 1, 2,
and 3. We have thus far determined that, in general, units in
the first hidden layer of our network code the visual input
independently of OCR while the units in the second hidden
layer code visual input while partially compensating for the
2D rotational effects of OCR (by accounting for head roll).
However, because our network compensates for OCR to
produce spatially correct smooth pursuit (see performance
in Fig. 3), we must instead examine how the outputs of each
unit accounted for OCR in order to fully characterize the
mechanisms underlying the transformation. To see how the
network accounted for 2D retinal rotations due to OCR, we
examined how each unit’s PDMF was modulated by head
roll-induced OCR.

For a unit’s output to compensate for head roll-induced OCR
its motor contribution should remain consistent regardless of
the OCR angle. Conversely, a unit that coded its output
according to retinal coordinates would exhibit shifts in an equal
and opposite direction relative to the signal for which it must
compensate. We present the effects of OCR on the frontopar-
allel motor field for two example units (63 and 88) from the
first and second hidden layers, respectively, of our 100-HLU
network in Fig. 8A. Here, the pseudocolor plots represent the
change in PDMF across changes in head roll (x-axis) and OCR
(y-axis), using conventions identical to those in the pseudo-
color plots in Fig. 5A. Across changes in head roll and OCR,
for unit 63 in the first hidden layer there was a shift of the
PDMF by approximately an equal and opposite angle of head
roll and OCR, indicating that this unit coded motor outputs
according to a retinal frame, as confirmed by multiple regres-
sion analysis (Fig. 8B). Alternatively, for unit 88 in the second
hidden layer there was no shift of the PDMF across head roll
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and OCR, indicating that this particular unit coded according to
an approximately spatial frame (Fig. 8B). Repeating this mul-
tiple regression analysis for all network units yielded similar
results between layers. Figure 8B shows the distributions of
these regression gains, along with their comparisons with the
spatially correct prediction (intersection of solid lines) and
retinal prediction (intersection of dashed lines).

This analysis revealed that units in each layer coded motor
output according to both the spatial and retinal predictions, but
also according to frames intermediate to both retinal and
spatial. The various reference frames used by units can be seen
in Fig. 8B, which shows units in both hidden layers clustering
around either the retinal or spatial hypotheses (see intersections
of dashed lines and of solid lines, respectively), and several

units coding for intermediate reference frames. Because of this
clear bimodality, using statistical analyses based on median
gains was not as revealing as in previous analyses, although for
both layers these statistical analyses agree with the qualitative
observation that units in both layers coded according to neither
retinal nor spatial frames during both head roll and ocular
torsion. However, these analyses could not distinguish between
the reference frame distributions of each layer (for both layers
and both head roll and ocular torsion, all group-level t-tests
P � 0.01 and there was no consistent change in variability
between layers of any network size). As in the visual tuning
analysis, the concomitant head roll and OCR dependence
suggests that units in both layers showed evidence of a learned
internal model of the head roll-OCR interaction.

Fig. 7. Typical HLU 3D and 2D motor fields. A: depiction of the 3D motor field for a typical unit from the 1st hidden layer of the 100-HLU network (unit 16).
In the pseudocolor plots, we show 3 orthogonal views: from the back (top left), revealing activities correlated to outputs in the frontoparallel (x-z) plane; from
the side (top right), revealing activities correlated to outputs in the sagittal (y-z) plane; from the bottom (bottom left), revealing activities correlated to outputs
in the transverse (x-y) plane. Also shown in each plot is the locus of the activity-weighted COMMF (white circle). B: 2D motor tuning curve for the same unit
from the 100-HLU network (unit 16). The radial distance represents the activation of the unit associated with each directional bin, and the error bars represent
the SE within each bin. The red bar represents the preferred motor tuning direction (PDMF). Note the similarity between the 2D tuning curve and the area of high
activation in the 3D motor field representation in A.
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In each of the other two experiments (oblique eye orienta-
tions and half-angle rule), HLUs exhibited motor field coding
frames consistent with those found in the head roll-OCR
simulation, as shown in the histograms in Fig. 8, C and D
(following the same conventions as Fig. 8B). Thus HLUs
displayed a variety of reference frames that are—at the group
level—sufficient to recover spatially accurate motor plans
(since our networks produce accurate movements).

Output Properties: Simulated Microstimulation

In contrast with the motor field analysis, simulated micro-
stimulation allowed us to investigate each unit’s specific con-
tribution to motor output while also activating a unit’s down-
stream connectivity, instead of only correlating its activity with
the output. To do this, we examined unit by unit how increases
in each unit’s activity affected network output by first setting
the required network output to 0 (by foveating the retinal target
in the network inputs) and then “evoking” network outputs by
artificially setting each unit’s activity to 5. Thus the output
vectors corresponded to an amplification of each unit’s normal
contribution to the network output. We then repeated this
process under three transformation contexts (i.e., head roll-
induced OCR, retinal rotations from oblique gazes, and the
half-angle rule) and compared changes in the network output
vectors to those required for each transformation to reveal the
reference frame of each unit’s motor output vector.

When determining the output reference frames of units, we
examined how shifts of the evoked network output accounted
for the spatial requirements of the visuomotor transformation,
analogous to how we used shifts of units’ preferred visual and
motor field tunings to delineate the unit-by-unit input and
motor field reference frames. In this section we review the
findings of three experimental simulations that we used to find
the output reference frame of each HLU, each representing the
corresponding simulations in the input and motor field refer-
ence frame analyses.

Simulated microstimulation reference frame analyses for
experiments 1, 2, and 3. In addition to our motor field analysis,
which found that units compensated for head roll-induced OCR
primarily according to mixed, intermediate output reference
frames in each hidden layer, we also wanted to see how
changing the eye-head geometry influenced units’ contribu-
tions to motor output and how these effects compensated for
OCR while accounting for downstream network connectivity.
To do so, we used simulated microstimulation and compared
changes to the “evoked” network output to those required for
a spatial or retinal coding.

Typical evoked gaze velocities across head roll and OCR for
units in the first (15) and second (93) hidden layers can be seen
in Fig. 9A. Each point represents the tip of the on-screen gaze
velocity vector evoked by microstimulation at a specified head
roll-OCR combination. As such, the gridlike patterns seen in
these plots represent the entire head roll-OCR space across
which we performed multiple regression analysis, as described
in the following paragraph.

The network had to compensate for OCR under conditions
of head roll in order to produce spatially correct pursuit—
therefore, because our network generated spatially accurate
pursuit, a complete compensation would reflect regression
gains between OCR (or head roll) and microstimulation output

Fig. 8. Motor field properties. A: shifts of a representative 1st HLU’s motor
tuning (top left, unit 63) and 2nd HLU’s motor tuning (top right, unit 88) from
the 100-HLU network under conditions of head roll-induced OCR. The
pseudocolor plots here represent the shift of motor field tuning similar to those
in Fig. 5A, but the polar tuning plots are omitted here for clarity. B: summary
of compensatory gain distributions for HLUs in 1st and 2nd hidden layers
across head roll and OCR. These distributions revealed retinal (unit 63), spatial
(unit 88), and mixed, intermediate coding by both 1st and 2nd HLUs. C and D:
summary of compensatory gain distributions for HLUs in 1st and 2nd hidden
layers during oblique gaze (C) and half-angle rule (D) simulations. These
distributions revealed mixed, intermediate coding by both 1st and 2nd HLUs.
Color scheme and plotting conventions are identical to those in previous
figures.
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equal to 0 while no compensation (implying a retinal coding of
outputs) would correspond to regression gains equal to �1.
However, as we have discussed above, because head roll and
OCR were correlated in our training set, either signal could
theoretically be used by the network to carry out the transfor-
mation. To account for this potential effect we performed
multiple regression analysis between the required rotation

angles (head roll and OCR) and the evoked eye movement
directions. For the typical units presented in Fig. 9A, one can
easily see that the unit from the first hidden layer (15) exhibited
a wider spatial distribution of evoked movements across head
roll and OCR compared with those evoked when the unit from
the second hidden layer (93) was stimulated. This result is
indicative of an intermediate coding by unit 15, as its evoked
movements are modulated by head roll and OCR but not in a
directly compensatory way. On the other hand, the narrow field
of evoked movements for unit 93 is indicative of a spatial
coding. These units were representative of the regression
findings for first and second HLUs.

Figure 9B shows the resulting multiple regression gains of
evoked movement shifts relative to head roll and OCR. We
performed these regression analyses on a unit-by-unit basis for
each network size and show the resulting histograms, along
with the spatial (intersection of solid lines) predictions, in Fig.
9B. This analysis revealed that first HLUs coded motor outputs
according to either spatial or intermediate reference frames
while second HLUs coded outputs mostly according to a
spatial reference frame, though with some intermediate coding
also. Across head roll, group-level t-tests on median gains were
not significantly different from the spatial hypothesis {hidden
layer 1: t(7) � �0.48, P � 0.65, 95%CI [�0.01, 0.01]; hidden
layer 2: t(7) � �1.18, P � 0.28, 95%CI [�0.01, 0.004]}.
Similarly, across OCR, group-level t-tests on median gains
were not significantly different from the spatial hypothesis
{hidden layer 1: t(7) � �0.29, P � 0.78, 95%CI [�0.03,
0.02]; hidden layer 2: t(7) � 0.63, P � 0.55, 95%CI [�0.01,
0.01]}. However, for both head roll and ocular torsion the
interquartile gain distances from the first hidden layer were
significantly larger (compared with those of the second hidden
layer) across all network sizes {head roll: t(7) � 3.92, P �
0.01, 95%CI [0.03, 0.12]; ocular torsion: t(7) � 5.50, P �
0.01, 95%CI [0.10, 0.24]}, suggesting that the first hidden
layer was coding according to a more intermediate frame
than the second hidden layer. Therefore, when retinal sig-
nals were rotated relative to the head because of OCR
(Blohm and Lefèvre 2010), this analysis revealed that, when
accounting for network connectivity, first HLUs coded mo-
tor outputs according to both spatial and intermediate
frames while second HLUs coded motor outputs according
to a primarily spatial reference frame. Additionally, as in the
other head roll-induced OCR simulations, the finding of an
effect for both head roll and OCR suggests at least a partial
learning of the head roll-OCR interaction.

In each of the other two experiments (oblique eye orienta-
tions and half-angle rule), HLUs exhibited microstimulation
coding frames consistent with those found in the head roll-

Fig. 9. Microstimulation properties. A: example evoked gaze velocity vector
end points, projected onto the screen for units 15 and 93 from the 1st and 2nd
hidden layers of the 100-HLU network, respectively, under conditions of head
roll-induced OCR. Also shown are the axes representing head roll (blue) and
OCR (red), which run along the outer edges of each “field” of evoked pursuit
movements. B–D: summaries of microstimulation compensatory gain distri-
butions for HLUs in 1st and 2nd hidden layers during head roll-induced OCR
(B), oblique gaze (C), and half-angle rule (D) simulations. Each of these
distributions revealed mainly spatial coding by the 2nd HLUs, with some 1st
and 2nd HLUs coding according to a mixed, intermediate frame as well. Color
scheme and plotting conventions are identical to those in previous figures.
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OCR simulation, as shown in the histograms in Fig. 9, C and
D (following the same conventions as Fig. 9B).

Summary of gradual visuomotor transformation. Using each
of these analyses, we determined the input and output coding
schemes of each unit within our network, enabling us to trace
the visuomotor transformation from retinal input to spatially
correct motor output. Figure 10 represents a summary of all
analyses and HLU gains, plotted as quartiles relative to the
retinal and spatial predictions for visual tuning, motor field,
and microstimulation analyses. We summarize the HLU refer-
ence frames for each network size and collapsed across each
experimental simulation (head roll-induced OCR, oblique
gaze-induced retinal rotations, or the half-angle rule). We
found that units in the first hidden layer of our network coded
visual velocity inputs according to a retinal reference frame
while units in the second hidden layer coded visual velocity
inputs according to both a retinal frame and a mixed, interme-
diate frame. Additionally, motor field analyses revealed that
the motor tunings of units in the first and second hidden layers
were coded according to retinal, spatial, and several mixed,
intermediate frames. When accounting for downstream con-
nectivity, simulated microstimulation analyses revealed that
units in the first hidden layer coded motor outputs according to
both spatial and intermediate reference frames while units in
the second hidden layer coded motor outputs primarily accord-
ing to a spatial reference frame. Therefore, one of the key
characteristics that we observed in both our input and output
analyses is that, in either case, units in at least one layer coded
according to various mixed reference frames, in neither retinal
nor spatial coordinates.

To see whether these intermediate coding schemes were
consistent on a per-unit basis, we performed a meta-analysis of
unit gains in the layers showing intermediate properties (in the
100-HLU network). In the first hidden layer, we found a
significant correlation between units’ motor field reference
frames during the oblique gaze simulation and the half-angle rule
simulation (slope � �0.19, r2 � 0.24, P � 0.01). For the second
hidden layer, we found significant correlations between units’
visual tuning reference frames during the oblique gaze simulation
and the half-angle rule simulation (slope � 0.26, r2 � 0.18, P �
0.01) and between units’ motor field reference frames during
the oblique gaze simulation and the half-angle rule simulation
(slope � 0.14, r2 � 0.05, P � 0.05). These significant corre-
lations between units suggest that, in some special cases, a
given unit utilized a common intermediate reference frame that
generalized across visuomotor contexts. However, these 3
significant cases represent a minority of all 12 possible com-
parisons between intermediately coding network layers, sug-
gesting that units code according to a reference frame that
depends on the exact context of the visuomotor transformation.
It would be interesting to see how the input and output
properties outlined in this report correlate with the neurophys-
iological properties of neurons in areas of the brain thought to
be involved in the visuomotor transformation for smooth pur-
suit (Blohm and Lefèvre 2010), such as MT and MST. The
simulation results presented here provide several testable pre-
dictions for the neurophysiological properties electrophysiolo-
gists might expect to find when investigating the responses of
neurons involved in smooth pursuit under different 3D trans-
formational contexts.

DISCUSSION

We designed and trained a physiologically inspired four-
layer, feedforward network model to simulate the transforma-
tion of retinal motion signals into spatially correct smooth
pursuit commands. After training had completed, we found that
the feedforward model could perform the spatially correct 3D
visuomotor velocity transformation for smooth pursuit while
obeying Listing’s law (Blohm and Lefèvre 2010). To carry out
this transformation units exhibited both gain modulation and
tuning shifts—two properties observed in electrophysiological
studies of pursuit-associated neurons (Chukoskie and Movshon
2009; Fujiwara et al. 2011; Inaba et al. 2007, 2011). Retinal
velocity tuning, motor tuning, and simulated microstimulation
analyses revealed that HLUs carried out the transformation in
a gradual fashion from retinal (first hidden layer inputs) to
spatial (second hidden layer microstimulation outputs). Thus
we suggest that our network units used gain modulation to
differentially weight each unit’s input-output contribution to
the transformation, allowing the network to generate a spatially
accurate pursuit command. To our knowledge, these findings
are consistent with all known electrophysiological properties of
pursuit-related areas of the brain, and could thus provide a
mechanistic explanation for the presence of eye and head
orientation signals in these areas. We discuss these points in
greater detail below.

General Discussion

We trained our network model to perform the general
transformation of 2D retinal signals for pursuit with any

Fig. 10. Summary of results across simulations and network sizes. We present
the quartile locations for the units of each hidden layer (1st along x-axis, 2nd
along y-axis) for each network size (see key), relative to the retinal (dashed
lines) and spatial (solid lines) predictions, for visual tuning shifts (orange
quartiles), motor field properties (purple quartiles), and microstimulation
properties (blue quartiles). Also shown along each axis (representing each
hidden layer) are the distributions of all unit gains in each analysis (color
coded), collapsed across all network sizes.
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combination of 3D eye and head geometries and found that, to
do this, the network utilized several emergent computational
strategies. First, the HLUs carried out the complex, nonlinear
pursuit transformation in a distributed fashion. As our tuning
shift analyses revealed, units coded input motion according to
various reference frames that were neither retinal nor spatial
(mixed intermediate frames) while they also coded motor
outputs according to a similar though more consistently spatial
frame. Therefore, one single unit alone could not account for
the full, spatially correct 3D transformation of retinal motion
into a head-centered pursuit command.

Both in our network and in the real brain, intermediate
reference frames are often reported (Chang and Snyder 2010;
McGuire and Sabes 2011). Those can even lie beyond the
limits of the expected range (e.g., overcompensating or anti-
compensating), and often the question about their meaning
arises. When performing such reference frame analyses on
(real or simulated) neural data, one should always keep in mind
that neurons do not care about reference frames; they partici-
pate in a certain computation and all that counts is the end
result, regardless of how it is achieved. Thus artificially as-
signing a reference frame to a unit is questionable, but, unfor-
tunately, correlating neural activity with measurable quantities
from the physical world is the only way we have to probe brain
function. Therefore, reference frame analyses can be used to
probe network mechanisms that cannot otherwise be quanti-
fied, in particular when investigating sensory-to-motor trans-
formations.

We also found that HLUs’ tuning curves were modulated by
eye and head orientation and velocity signals in a way that is
consistent with gain field theory for reference frame transfor-
mations (Blohm and Crawford 2009). Thought to be the
optimal way for feedforward network models to compute
nonlinear sensorimotor transformations (Blohm 2012; Blohm
et al. 2009; Chang et al. 2009; Pouget and Sejnowski 1997;
Salinas and Abbott 1995, 1996; Smith and Crawford 2005;
Xing and Andersen 2000; Zipser and Andersen 1988), the
finding that gain fields were also used to account for the
requirements of Listing’s law suggests that the brain could
theoretically utilize gain fields when adhering to Listing’s law
during the transformation for smooth pursuit (Blohm and
Lefèvre 2010).

Network units also shared many activation properties with
neurons recorded in areas MT and MST. First, the visual tuning
of HLUs were complex, often with more than one peak of
activity representing more than one “preferred” direction and
areas of lower activity between those peaks (see Fig. 3).
Neurophysiological recordings have found very similar veloc-
ity tuning properties in area MT neurons (Richert et al. 2013),
suggesting that the network units might encode visual inputs in
a fashion similar to MT neurons. In our network we also
observed the use of gain modulation to generate smooth pur-
suit, similar to the gain fields that have been found in electro-
physiological recordings from areas MT and MST during
pursuit tasks. For example, visual and pursuit-related activity
of MT and MST neurons are gain modulated by eye orientation
(Bremmer et al. 1997; Lee et al. 2011) and by pursuit velocity
(Chukoskie and Movshon 2009; Inaba et al. 2007, 2011).
Additionally, gain fields have been implicated in the reference
frame transformations for reaching (Batista et al. 1999; Blohm
et al. 2009; Chang et al. 2009; Galletti et al. 1995) and for

depth (Bhattacharyya et al. 2009; Blohm 2012; Ferraina et al.
2009), as parietal neurons are gain-modulated in response to
eye orientation changes and changes in hand position (Batista
et al. 1999; Bhattacharyya et al. 2009; Chang et al. 2009;
Ferraina et al. 2009; Galletti et al. 1995). If the brain indeed
carries out the visuomotor velocity transformation for pursuit
in the same way as our network model, the agreement between
emergent properties of our network model and electrophysio-
logical findings suggests that gain modulation in areas MT and
MST may play a key role in integrating extraretinal signals into
the motor plan.

Analogous to the behavior of units within the second hidden
layer, shifts of neuronal visual tuning functions have been
observed in area MST. Specifically, shifts have been observed
during pursuit under conditions of self-motion (Bradley et al.
1996; Page and Duffy 1999; Shenoy et al. 1999, 2002) and
during pursuit of an on-screen stimulus at a fixed depth
(Chukoskie and Movshon 2009; Inaba et al. 2007, 2011).
Tuning shifts have also been reported after changes in eye,
head, and body orientation in area MST (Fujiwara et al. 2011)
and in the frontal eye fields (FEF) (Kurkin et al. 2007).
Furthermore, these shifts corresponded to coding schemes not
only in retinal and spatial frames but also in mixed, interme-
diate reference frames, which is not unlike the mixed coding
schemes observed across eye orientation shifts in area MST
(Bremmer et al. 1997), in the lateral intraparietal area (LIP)
during saccades to remembered auditory locations (Stricanne et
al. 1996), in the ventral intraparietal area (VIP) across eye
orientation shifts (Duhamel et al. 1997), in the dorsal premotor
cortex during reach (Batista et al. 2007), and in previous
computational work (De Meyer and Spratling 2013; Xing and
Andersen 2000). Taken together, these findings suggest that
shifts of neuronal tunings in areas MST and FEF might
represent a distributed mechanism for the compensation for
distortions and rotations to retinal information, using properties
that the second layer of our network model reproduced spon-
taneously. Interestingly, previous feedforward network models
(Salinas and Abbott 1995, 1996) have also found that the
presence of these tuning shifts is indicative of gain modulation
at earlier processing stages of coordinate transformations.

While, to our knowledge, detailed mapping of neuronal
motor fields has not been performed for MT or MST neurons,
there have been several studies (Born et al. 2000; Britten and
van Wezel 1998; Groh et al. 1997; Ilg and Schumann 2007;
Komatsu and Wurtz 1989) that investigated microstimulation
of neurons in these areas and the effects on smooth pursuit.
Another set of studies (Britten and van Wezel 1998; Celebrini
and Newsome 1995; Salzman et al. 1990, 1992) has investi-
gated the effects of microstimulation on perceived heading or
motion direction. Microstimulation of area MT neurons has
been shown to bias both perception of motion toward the
preferred retinal tuning of those neurons (Born et al. 2000;
Salzman et al. 1990, 1992) and pursuit velocity in the anti-
preferred retinal velocity direction or the pursuit direction
typically required to minimize retinal slip (Born et al. 2000;
Groh et al. 1997; Komatsu and Wurtz 1989). Similarly, simu-
lated microstimulation of our first HLUs elicited network
output velocities that were biased toward the units’ preferred
retinal velocity tunings. On the other hand, microstimulation of
area MST neurons has been shown to bias heading perception
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(Britten and van Wezel 1998) and motion direction perception
(Celebrini and Newsome 1995) as well as pursuit direction
toward the preferred spatial tuning (Ilg and Schumann 2007) or
toward the recording site of those neurons (Komatsu and Wurtz
1989), which aligns well with the spatial constancy of the
network outputs when we stimulated units in the second hidden
layer. Additionally, microstimulation studies of FEF (Gottlieb
et al. 1993; Tanaka and Lisberger 2002), supplementary eye
fields (SEF) (Missal and Heinen 2004), and the cerebellar
vermis (Krauzlis and Miles 1998) have each found that pursuit
outputs correspond to the stimulated neurons’ spatial prefer-
ences, suggesting that these areas could alternatively be con-
sidered functional analogs of the second hidden layer of the
network model.

Another emergent property of the network is that compen-
sation for head roll-induced OCR depended on both head roll
and OCR signals during the visual tuning, motor field, and
microstimulation reference frame multiple regression analyses.
This suggests that the network was able to learn an internal
model of the head roll-OCR interaction, even though eye
orientation was only partially dependent on head orientation in
the training set. If the brain also uses an internal model of head
roll-induced OCR to compensate for ocular torsion, this might
explain why there is little direct electrophysiological evidence
of compensation for OCR in pursuit-related neurons (Fujiwara
et al. 2011; Kurkin et al. 2007).

The presence (or absence) of ocular torsional signals in
cortex raises some questions about how the brain might plan
geometrically correct pursuit movements (Blohm and Lefèvre
2010). Theoretically, in order to correctly interpret retinal input
an estimate of ocular torsion must be, and is, incorporated
(Blohm and Lefèvre 2010; Klier and Crawford 1998; Leclercq
et al. 2013b; Murdison et al. 2013). Traditional thinking is that
a 2D motor command is transformed into a 3D movement at
the level of the brain stem and/or extraocular muscles, and
while this might be true it does not preclude the visual system
from requiring knowledge of torsion in order to correctly
interpret primary visual information (for review see Klier et al.
2013). But what is the source of these signals? A simple
explanation could be that cortical torsional signals might sim-
ply have gone undetected in electrophysiological studies, an
effect potentially due to the fact that ocular torsional signals
(orientation and velocity) are typically small in magnitude,
making them more difficult to detect. In this case, these explicit
signals would presumably be included in any 3D motor plan.
Another potential explanation comes from the idea that ocular
torsion does not have to be explicitly coded but could instead
be the result of an internal model of head and eye orientations
and velocities (i.e., based on the other signals present). As long
as cortex has a model of the interactions between eye and head
signals, it could form an implicit estimate of ocular torsion. We
accounted for the correlated nature of the head and eyes when
we analyzed both head roll and ocular torsion as free variables
in our regression models, and found that our networks spon-
taneously used eye-head interactions to their advantage when
generating pursuit movements. Therefore, our model predicts
that the brain would utilize all available signals about 3D eye
and head geometry, regardless of their source, when generating
pursuit movements.

Comparison to Previous Models

Gain modulation is an efficient way for feedforward net-
works to compute complex coordinate transformations (e.g.,
Blohm and Crawford 2009). The gain field mechanism used by
our network echoes previous feedforward network models that
also employed gain fields to perform coordinate transforma-
tions (Blohm 2012; Blohm et al. 2009; Chang et al. 2009;
Deneve et al. 2001; Keith et al. 2007; Pouget and Sejnowski
1997; Salinas and Abbott 1995, 1996; Smith and Crawford
2005; Xing and Andersen 2000; Zipser and Andersen 1988).
Here, we show that the transformation of 2D retinal velocity
(and position) signals into 3D smooth pursuit movement plans
can be carried out by a physiologically inspired feedforward
network model using gain modulation. This finding further
supports the notion of gain fields being the primary mechanism
for feedforward coordinate transformations in the brain (De-
neve et al. 2001; Pouget and Sejnowski 1997; Salinas and
Abbott 1995, 1996; Xing and Andersen 2000; Zipser and
Andersen 1988), including transformations in 3D (Blohm
2012; Blohm et al. 2009; Chang et al. 2009; Smith and
Crawford 2001).

Although there have also been several models of the roles of
areas MT and MST during smooth pursuit (Furman and Gur
2003, 2005; Pack et al. 2001; Shibata et al. 2005), during
coordinated saccades and pursuit (Grossberg et al. 2012),
during motion perception (Cameron et al. 1998; Furman and
Gur 2005), and in reference frame transformations (Dicke and
Thier 1999), our model represents the first time that the pursuit
transformation has been performed in three dimensions, as
previous models including a pursuit component have only
carried out transformations in one (Grossberg et al. 2012; Pack
et al. 2001; Shibata et al. 2005) or two (Furman and Gur 2003,
2005) dimensions. These models could not perform the gen-
eral, 3D transformation that our model performs here, which
accounts for 2D retinal signals, 3D eye orientation and veloc-
ity, and 3D head orientation and velocity, and instead they only
accounted for the vector summation of retinal and extraretinal
signals.

Additionally, some of these network studies relied on pre-
determined connectivity between model neurons in MT, MST,
visual, and/or motor cortical areas (Furman and Gur 2003,
2005; Grossberg et al. 2012; Pack et al. 2001), whereas our
network only relied on a predetermined processing architecture
of three feedforward connection matrices, which were self-
organized during training, between four processing layers. This
architecture allows for a more general description of the
mechanisms underlying transformations in the brain and does
not limit it to neurons in prespecified areas such as MT and
MST, although here we argue that our model accounts for the
activation properties of neurons in these areas solely as a result
of learning the 3D transformation for pursuit. Finally, to our
knowledge, our network model is the first to account for the
combined coding of retinal position and velocity, as found in
MT (Gattass and Gross 1981; Richert et al. 2013), although
only in the context of smooth pursuit.

To our knowledge, only one other model created by Smith
and Crawford (2001) performed the 3D transformation for
saccade generation using a neural network framework similar
to ours, although there were several differences between their
study and ours. These differences consisted of distinct saccade
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and pursuit pathways, model design, and major findings. First,
they investigated the position transformation underlying sac-
cade generation with only retinal error and gaze orientation
inputs (generating a motor error output), whereas we investi-
gated the velocity transformation for smooth pursuit with
retinal, eye, and head orientation and motion inputs (generating
an eye velocity output). While these pathways share some
neural circuitry, they are ultimately distinct (for review, see
Krauzlis 2004), especially when also considering head orien-
tation and motion signals. Aside from the design choices
coming from the differences between saccade and pursuit
generation (e.g., their use of retinal position compared with our
retinal position and velocity), they utilized different eye orien-
tation codes. We used push-pull coordinates (similar to motor
neurons guiding the head-centered pairs of extraocular mus-
cles), while they utilized 3D angular vector coordinates (rep-
resenting the spatial vectors required for movement). Finally,
the analyses they used to investigate how units in their model’s
hidden layer carried out the reference frame transformation
consisted of simulated microstimulation, simulated lesions,
and computing the sensitivity vectors for each unit, with no
investigation of gain fields as we did here. Their main findings
were also different from ours: instead of units carrying out the
transformation in a fully distributed fashion as ours did, their
units spontaneously organized into three major classes, each
being responsible for a different aspect of the transformation.
As such, our model provides novel predictions for circuitry
underlying the generation of smooth pursuit movements while
accounting for eye and head geometries, and these differences
suggest that these mechanistic properties are distinct from
those underlying the saccadic transformation.

Predictions and Limitations

Because our network model performs the general 3D trans-
formation of 2D retinal signals for smooth pursuit, it can be
used to make many testable predictions about the neurophys-
iological properties of areas involved in the transformation for
smooth pursuit. As we observed, the network model uses gain
modulation to accomplish the transformation—a property that
has been observed in numerous visuomotor areas in the brain
(Batista et al. 1999; Bhattacharyya et al. 2009; Bremmer et al.
1997; Chang et al. 2009; Chukoskie and Movshon 2009;
Ferraina et al. 2009; Galletti et al. 1995; Inaba et al. 2007,
2011; Lee et al. 2011), some of which are involved in pursuit
(Bradley et al. 1996; Bremmer et al. 1997; Chukoskie and
Movshon 2009; Fujiwara et al. 2011; Inaba et al. 2007, 2011;
Lee et al. 2011; Page and Duffy 1999; Shenoy et al. 1999,
2002)—suggesting that the brain may use a similar mechanism
for carrying out the transformation. Under this assumption, we
hypothesized that areas MT and MST are represented by our
model’s first and second hidden layers, respectively, although
in the real brain the transformation may be carried out by
numerous other areas. If this is in fact the case, the model
predictions would still hold but we would expect a more
gradual transformation throughout these areas using gain mod-
ulation.

One of our model’s main predictions is in regard to the
task-dependent, mixed coding of visual inputs and motor
outputs in areas involved in the transformation. Because we
found that units in the first hidden layer code retinal signals

independently of extraretinal signals, our model predicts that
neurons early in the processing of the transformation should
exhibit retinal velocity tuning that is purely gain modulated by
eye and head orientation. On the other hand, because we found
that the visual tunings of units in the second hidden layer shift
with extraretinal changes, our model predicts that neurons in
subsequent processing stages should be similarly dependent on
eye and head orientation. This prediction, though present in
each of our analyses, is clearly exemplified in our separability
analysis (Bremner and Andersen 2012; Buneo et al. 2002;
Pesaran et al. 2006) during OKN (Fig. 9), revealing that units
in the first hidden layer typically code according to retinal
target signals while second HLUs typically code according to
a mixture of retinal and eye-in-head motion signals. This
prediction for our first hidden layer fits well with the findings
in area MT (Chukoskie and Movshon 2009; Inaba et al. 2007,
2011); however, the separability of retinal and extraretinal
signals has never been explicitly tested in area MST. Despite
this, Lee and colleagues (2011) found that MST neurons
account for eye motion when coding heading direction during
pursuit, a finding that is compatible with the inseparability of
retinal and eye-in-head motion signals in our model. Taken
together, this electrophysiological evidence (Bradley et al.
1996; Bremmer et al. 1997; Chukoskie and Movshon 2009;
Fujiwara et al. 2011; Inaba et al. 2007, 2011; Lee et al. 2011;
Page and Duffy 1999; Shenoy et al. 1999, 2002) and the
findings of our model suggest that the 3D transformation for
pursuit could be fully accounted for by areas MT and MST.

Moreover, we found that the intermediate coding schemes of
units in each simulation were usually uncorrelated with one
another (in 9 of 12 possible comparisons between simulation
gains), implying that the exact contribution of each unit to the
transformation depended on the current task. Task-dependent
coding has been theorized to be used by neurons involved in
several different transformations (Pouget and Sejnowski 1997)
and in fact may be an efficient way for the brain to carry out
complex transformations across multiple areas (e.g., Bous-
saoud and Bremmer 1999). Thus our network model predicts
that networks of real neurons could use similar intermediate
coding schemes when performing transformations in a distrib-
uted fashion. If MT and MST are functionally equivalent to the
layers of our network, our simulations predict that the visual
tunings and motor tunings should shift with eye and head
orientation, though not necessarily according to any specific
reference frame or consistently across tasks.

When considering these predictions, it is important to con-
sider the limitations of our model—some of which are similar
to those of previous feedforward network models (Blohm
2012; Blohm et al. 2009). First, the network only performs the
transformation for the initiation, or “open-loop,” portion of
smooth pursuit (Blohm and Lefèvre 2010; e.g., Ilg 2008 or
Lisberger 2010). Therefore, the transformation during the min-
imization of retinal slip during ongoing smooth pursuit (i.e.,
once pursuit is driven primarily by extraretinal signals) is
beyond the scope of this model. Next, in the brain sensory
information about the eyes and the head arrives to visuomotor
areas via proprioception, vestibular inputs, or efference copies,
and we did not distinguish between these possibilities here. As
a result, if, for example, head velocity is coded both via
proprioception and efference copies the CNS would have to
solve the multisensory integration problem (while also ac-
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counting for relative delays), which we did not consider for
purposes of this model (Burns and Blohm 2010; McGuire and
Sabes 2009; Sober and Sabes 2003, 2005). Additionally, we
constructed our network model to be fully feedforward, rate-
based, and static—three assumptions that are almost never
valid in the brain. In the brain there are recurrent connections
between neurons; neurons follow spike codes and perform
computations in a time-dependent, dynamic way. Also, the
network architecture does not follow true cortical structure. We
chose to implement two hidden layers, but in the brain the
transformation might be carried out across several neural areas,
potentially influencing the performance of the network (Her-
mundstad et al. 2011).

Simulated microstimulation also presented two main limita-
tions. Because we did not model downstream pursuit circuitry
such as the omnipause neurons (OPNs), our model does not
employ any gating mechanisms (e.g., the OPNs, whose activ-
ities are lowered during pursuit) that might potentially account
for the fact that microstimulation effects are seen only during
ongoing pursuit (Born et al. 2000; Groh et al. 1997; Ilg and
Schumann 2007; Komatsu and Wurtz 1989). However, micro-
stimulation-evoked smooth pursuit under a constant velocity
(in the visual preferred direction) produced network output
vectors qualitatively identical to those evoked from fixation,
though offset by the initial eye velocity. Additionally, MT has
been found to contain both local motion and wide field motion
detectors (Born 2000; Born and Tootell 1992), each of which
evokes distinct eye movements when stimulated, potentially
because of the respective preferences for target and back-
ground motion (Born et al. 2000) and their respective projec-
tions to the either the dorsal or lateral subregion of MST
(Berezovskii and Born 2000; Komatsu and Wurtz 1988). Our
self-organizing network model could not reproduce these neu-
ron types because the simulated pursuit task used to generate
the training set contained only a point motion target that was
pursued in complete darkness (i.e., there was no background
motion in the opposite direction projected onto the retina), thus
presenting one potential area for expansion.

Finally, the training method used might have slightly influ-
enced the detailed emergent properties of the network, al-
though we expect qualitatively similar results with other train-
ing algorithms (Blohm et al. 2009). Thus these limitations
provide several potential extensions of our model for future
work. Astonishingly, despite these limitations and abstractions
from the real cortical network, there was a striking similarity
between our model units and known pursuit neuron properties
in the brain. This not only validates our approach but also
indicates that such simple feedforward models might be good
tools to understand the principal mechanisms underlying sen-
sory-to-motor transformations.

In summary, we have shown that a simple feedforward
network model can carry out the 3D, spatially correct trans-
formation underlying smooth pursuit while following Listing’s
law (Blohm and Lefèvre 2010). The network model does so
using eye- and head-dependent gain modulation to weight
visual tuning, resulting in shifts of downstream visuomotor
tuning, and generating a motor plan that fits the spatial task
requirements. Thus we provide a mechanistic explanation for
how this transformation could be performed by the brain and
suggest that areas MT and MST utilize the powerful compu-
tational means of gain modulation and tuning shifts to do so

(Bremmer et al. 1997; Chukoskie and Movshon 2009; Fujiwara
et al. 2011; Inaba et al. 2007, 2011). Importantly, the model
simulations we present here provide several testable predic-
tions for the neurophysiological properties that might be pres-
ent in any area involved in the 3D transformation of retinal
signals for smooth pursuit.
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