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Control of Movement

Confidence in predicted position error explains saccadic decisions during
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Abstract

A fundamental problem in motor control is the coordination of complementary movement types to achieve a common goal. As a
common example, humans view moving objects through coordinated pursuit and saccadic eye movements. Pursuit is initiated
and continuously controlled by retinal image velocity. During pursuit, eye position may lag behind the target. This can be com-
pensated by the discrete execution of a catch-up saccade. The decision to trigger a saccade is influenced by both position and
velocity errors, and the timing of saccades can be highly variable. The observed distributions of saccade frequency and trigger
time remain poorly understood, and this decision process remains imprecisely quantified. Here, we propose a predictive, proba-
bilistic model explaining the decision to trigger saccades during pursuit to foveate moving targets. In this model, expected posi-
tion error and its associated uncertainty are predicted through Bayesian inference across noisy, delayed sensory observations
(Kalman filtering). This probabilistic prediction is used to estimate the confidence that a saccade is needed (quantified through
log-probability ratio), triggering a saccade upon accumulating to a fixed threshold. The model qualitatively explains behavioral
observations on the frequency and trigger time distributions of saccades during pursuit over a range of target motion trajecto-
ries. Furthermore, this model makes novel predictions that saccade decisions are highly sensitive to uncertainty for small pre-
dicted position errors, but this influence diminishes as the magnitude of predicted position error increases. We suggest that this
predictive, confidence-based decision-making strategy represents a fundamental principle for the probabilistic neural control of
coordinated movements.

NEW & NOTEWORTHY This is the first stochastic dynamical systems model of pursuit-saccade coordination accounting for noise
and delays in the sensorimotor system. The model uses Bayesian inference to predictively estimate visual motion, triggering sac-
cades when confidence in predicted position error accumulates to a threshold. This model explains saccade frequency and trig-
ger time distributions across target trajectories and makes novel predictions about the influence of sensory uncertainty in
saccade decisions during pursuit.

Bayesian; bounded accumulation; Kalman Filter; modeling; motor coordination

INTRODUCTION

The coordination between continuously controlled and
discretely triggered movements to achieve a common goal
remains a fundamental problem in neuroscience. This
coordinated motor control is exemplified in the pursuit
and saccadic eye movements that humans perform when
tracking moving objects. Pursuit eye movements are con-
tinuously controlled to minimize the relative motion of a

visual image on the retina (1, 2). Due to noise and delays
prevalent in sensorimotor systems (3, 4), pursuit trajec-
tory may deviate from and lag behind the true target tra-
jectory (5). Furthermore, eye velocity is typically lower
than the target velocity (6, 7), resulting in an accumula-
tion of position error during pursuit. As a result, the posi-
tion of the visual image may drift outside the high acuity
foveal region of the retina. Saccades are rapid eye move-
ments that are discretely triggered to reposition the target
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onto the fovea (8, 9). In addition to the categorization of
continuous versus discrete movements as requiring ver-
sus omitting sensory feedback, respectively, a defining
characteristic of discrete movements is their requirement
for an externally timed trigger to initiate movement exe-
cution (10, 11). However, the decision process regulating
the trigger of saccades during pursuit remains poorly
understood. A quantitative model of this decision process
has potential to illuminate key principles in the stochastic
coordination of continuous and discrete movements for a
common goal.

Previous studies have characterized the sensory condi-
tions correlating with saccade trigger during pursuit,
though these observations have not yet been synthesized
into a mechanistic model. It has been well documented
that pursuit can be initiated without executing saccades if
the target is displaced backward (step) relative to its
motion direction (ramp) such that it crosses the fixation
position (target-crossing time, TXT) in �200ms (12). This
pattern of step-ramp target motion with target-crossing
times slightly earlier or later than this critical 200-ms win-
dow tends to evoke saccade with long, variable latencies
compared with targets whose motion is in the same direc-
tion as the step (13). A similar pattern of saccade frequency
and trigger time distributions is observed during sus-
tained, steady-state pursuit (14). Thus, the combination of
position error and retinal slip are important signals influ-
encing saccade trigger. In one dimensional, horizontal
tracking, a documented behavioral correlate of saccade
trigger is the negative ratio of position error to retinal slip
(i.e., velocity error), which represents the time at which
the eye trajectory will cross the target trajectory based on
linear extrapolation (14). This ratio, originally named
eye-crossing time (TXE), will henceforth be referred to as
time-to-foveation (TTF) to parallel the nomenclature of
time-to-collision and time-to-contact used in studies of
steering and interception (15–17). Time-to-foveation cor-
relates well with summary statistics of saccade fre-
quency, but its ability to dynamically predict saccade
decisions is limited when retinal slip is close to zero
(time-to-foveation goes to infinity) or with two-dimen-
sional target motion (where linear extrapolations of eye
and target trajectory commonly fail to intersect). Thus,
although existing data sets have outlined the influence of
sensory signals on saccade frequency and trigger time, a
quantitative model explaining trial-by-trial saccade deci-
sions is still missing.

A framework commonly used in modeling decision-mak-
ing under uncertainty is bounded evidence accumulation
(18–22). In these models, noisy information is sequentially
sampled and the likelihood that these data support a particu-
lar response is integrated over time. Responses are triggered
when the accumulated evidence for that response reaches a
threshold. Choices, response times, postdecision confidence,
and neuronal responses in sensorimotor brain areas are con-
sistent with this framework (23–29). Nevertheless, these sto-
chastic decision models have had limited application in
oculomotor control, since previous pursuit models relied on
deterministic visual motion signals (30). However, recent
Bayesian models successfully simulated the control of pur-
suit from noisy motion signals (31, 32), and predictions about

pursuit and saccadic amplitude programming have been
validated (33). This provides a novel opportunity to model
the stochastic, sensory basis of saccadic decision-making
during pursuit.

Here, we propose a predictive, probabilistic decision
mechanism for saccade trigger that explicitly accounts for
sensorimotor delays and uncertainties. Retinal position,
velocity, and acceleration errors are estimated from noisy,
delayed sensory signals through Kalman filtering and pre-
dictively extrapolated to overcome sensorimotor delays.
Saccades are triggered when saccade confidence accumu-
lates to a threshold. We define saccade confidence as the
log probability ratio of the predicted position error being
outside the foveal center. This definition has roots in the
sequential probability ratio test (34, 35) and agrees
with the proposition that the term confidence should
reflect the probability that a response/action is appropri-
ate given the observed evidence (36). Furthermore, this
framework has a plausible neural basis in probabilistic
population coding (37–40). The model simulates saccade
frequency and trigger time distributions evoked by a wide
range of step-ramp target motion trajectories and makes
novel predictions about the influence of increased sensory
uncertainty (e.g., by blurring the visual target or due to
signal-dependent noise). The model illustrates how pre-
dictive probabilistic decision-making can flexibly coordi-
nate continuously controlled and discretely triggered
orienting movements for a common goal. We suggest this
stochastic, predictive, confidence-based decision mecha-
nism represents a fundamental principle in the neural
control of motor coordination.

METHODS

Model Overview

The purpose of this model is to explain the sensory basis
of saccadic decision-making during smooth pursuit eye
movements. Using a recent Bayesian model of motion esti-
mation and pursuit dynamics (32), we develop a novel sto-
chastic evidence accumulation model of saccade triggering.
The overall model consists of three interconnected modules:
a sensory pathway for predictive state estimation, a decision
pathway for evidence accumulation, and a motor pathway
implementing the dynamics of eye motion (Fig. 1). The key
features of the sensory pathway are recursive Bayesian infer-
ence for state estimation (Fig. 1, Kalman filtering) and pre-
diction through linear motion extrapolation (Fig. 1, sensory
extrapolation) to compensate for sensorimotor delays and
predict future position error. The decisionmechanism uses a
predictive, probabilistic position error estimate to compute
the log-probability ratio that the target is left versus right of
the fovea (which we define as saccade confidence). A saccade
is triggered when leaky accumulation of saccade confidence
reaches a threshold value. We use this model to simulate
trial-by-trial visual tracking and predict frequency and trig-
ger time distributions of saccades evoked by a range of step-
ramp target motion trajectories.

We will denote matrices and vectors in bold and scalars in
unbolded case. Symbols with hat (^) denote estimates of
latent variables.
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Sensory Pathway

The sensory pathway is founded on the visual motion
processing pathway previously described (32). The true
(deterministic) retinal state, ddet, is defined as the difference
between the position, velocity, and acceleration of the target,
t, and the eye, e:

ddetk ¼ tk � ek ¼
PEdet

k

RSdetk

RAdet
k

26664
37775 ð1Þ

where PEdet
k is position error, RSdetk is retinal slip, RAdet

k is reti-
nal acceleration, and k represents the current discrete time
step in the numerical simulation (1-ms time steps).

The observed retinal state, dobs, is delayed by 70ms (30,
41) and corrupted by additive and signal-dependent noise:

dobsk ¼ ddetk�70 þ Umultd
det
k�70 þ /add ð2Þ

where Umult and /add are uncorrelated noise covariance

matrices with values drawn from /mult�N 0; r2mult

� �
and

/add�N 0; r2add

� �
at each time step. The values of noise pa-

rameters are listed in Table 1. These terms represent the sig-
nal-dependent and baseline noise levels corrupting visual
sensory information. Both behavioral and electrophysiologi-
cal data are consistent with this noise structure in the
position and motion information driving saccades and
pursuit (5, 42–47).

Using delayed, noisy observations of image motion, a
Bayes-optimal probabilistic estimate of retinal state, bdsens,
is computed through Kalman filtering (32, 48). This
method of recursive Bayesian estimation combines noisy
observations (dobs) with priors of the noise characteristics
and dynamics of the world (i.e., a generative model) to
estimate retinal state. This generative model assumes the

evolution of retinal state can be described by an uncorre-
lated random walk:

dsenskþ 1 ¼ dsensk þ kk ð3Þ
where k is an uncorrelated additive noise with k�N 0;Q2

� �
representing the state variability, a prior belief about how
retinal state changes over time. The generative model also
contains priors about the noise characteristics of visual
observations of retinal state:

dobsk ¼ dsensk�70 þ Ykd
sens
k�70 þ vk ð4Þ

where Y and v are the expected, uncorrelated signal-depend-
ent and additive noise covariance matrices with Y�N 0;D2

� �
and v�N 0;R2

� �
. These terms represent the brain’s learned

estimates of the noise characteristics of sensory observa-
tions. We set D2 ¼ r2mult and R2 ¼ r2add. This corresponds to
an accurate estimate of noise parameters, although it has
been shown an exact knowledge of these values is not crucial
(32, 49).

Kalman filtering combines the current estimate of retinal

state, bdsensk , the current noisy observation, dobsk , and prior
knowledge of noise characteristics, R, D, and Q, to optimally
estimate retinal state at the next time step (50, 51):bdsenskþ 1 ¼ bdsensk þ Kk dobsk � bdsensk

� �
þ gk ð5Þ

Kk ¼ Rsens
k Rsens

k þ R2 þ D2 Rsens
k þ bdsensk

bdsensTk

� �
D2T

� ��1

ð6Þ

Rsens
kþ 1 ¼ Q2 þ X2 þ I � Kkð ÞRsens

k ð7Þ
where Rsens is the estimated error covariance of the retinal
state estimate,K is the Kalman gain, and I is the identityma-
trix. The Kalman gain is calculated and used to weigh incom-
ing sensory evidence according to its relative reliability
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Figure 1. Global overview of model architecture. Sensory pathway (light green): retinal state information is delayed, corrupted by signal-dependent
noise, then estimated through Kalman filtering, and predictively extrapolated to generate predicted position error and predicted retinal slip. Saccade de-
cision pathway (dark green): predicted position error and its associated uncertainty are used to compute the log-probability ratio that the target is left vs.
right of the fovea. This value, defined as saccade confidence, is accumulated by a leaky integrator to trigger saccades upon threshold crossing. Motor
pathway (gray): describes the premotor commands for saccades and pursuit, which are linearly combined in the final common pathway (eye plant) imple-
menting the dynamics of eye motion. PE, position error; RS, retinal slip; dsens, sensory retinal state; dpred, predicted retinal state.
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compared with the current optimal estimate. g is the inter-
nal noise of estimation with g�N 0;X2

� �
, which represents

variability in the estimation process. The values of Kalman
filtering parameters are listed in Table 1.

In the final, predictive stage of the sensory pathway, reti-
nal state is linearly extrapolated through prior knowledge of
sensorimotor delays. It has been shown that saccades can
accurately foveate moving targets, requiring motion-based
prediction to extrapolate saccade amplitudes to compensate
for the visuomotor delay and ensuing target displacement
during saccade execution (52–56). Similarly, it has been
shown that motion information driving pursuit accounts for
both velocity and acceleration, which minimizes instability
in pursuit dynamics (57–59). Our model hypothesizes that
the same predictive position error signal for programming
saccade amplitude is used in the mechanism deciding sac-
cade trigger:

bdpredk ¼
cPEpred

kcRSpredk

24 35 ¼ 1 Tsacc 0

0 1 Tpurs

" #bdsensk ð8Þ

R
pred
k ¼ RPEpred

k

RRSpred
k

24 35 ¼ 1 Tsaccð Þ2 0

0 1 Tpursð Þ2

" #
Rsens
k ð9Þ

where Tsacc ¼ 125 ms and Tpurs ¼ 70 ms represent the time
constant of extrapolation for each respective signal. The ra-
tionale for the longer extrapolation time for position error is
to account for the additional decision accumulation time,
motor delay, andmovement duration specific to the saccadic
movement system (60).

Saccade Decision Pathway

The saccade decision pathway is inspired by the sequen-
tial probability ratio test and stochastic bounded accumula-
tion models of decision-making (26, 35). This pathway
computes the evidence that the target is outside the fovea,

i.e., the log-probability ratio of the target being left PLeftð Þ
versus right PRightð Þ of the fovea:

PLeft
k ¼ 1� PRight

k ¼ cdf cPEpred

k ;RPEpred
k

� �
ð10Þ

¼
ð0

�1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pRPEpred

k

q exp � x� cPEpred

k

� �2
2RPEpred

k

0B@
1CAdx

where cdf(mean, variance) represents the cumulative distri-
bution function of a Gaussian distribution (i.e., predicted
position error) evaluated at zero (i.e., the fovea).

Saccade confidence bC� �
is updated through leaky integra-

tion of this evidence:

current evidence ¼ log
PRight
k

PLeft
k

 !
ð11Þ

bCRight

k ¼ � bCLeft

k ¼ bCRight

k�1 þ dt

ss

� �
current evidence� bCRight

k�1

� �
ð12Þ

where ss ¼ 25 ms is the time constant of leaky integration.
When predicted PE is close to zero, PRight and PLeft are close
in value (�0.5), and thus saccade confidence is close to zero
(log(1) = 0). When predicted PE is small, saccade confidence

decreases as RPEpred
k increases. When predicted PE is large,

saccade confidence is less sensitive to RPEpred
k . This stems

from the cumulative distribution function (evaluated at
zero) changing nonlinearly with mean and variance. Using
leaky integration (Eq. 12), the weight of past evidence expo-
nentially decays at a rate specified by ss, biasing decision-
making toward recent evidence and preventing instantaneous
confidence outliers to erroneously trigger a saccade. The esti-

mate of saccade confidence bC� � acts as a decision variable
triggering saccades when its magnitude exceeds hsaccade ¼ 4:0.
This value corresponds to a 98.2% probability that the target
is displaced from the center of the fovea in a specific horizon-
tal direction. These values of ss and hsaccade were selected by
manually tuning parameters to generally match the qualita-
tive trends in saccade frequency and trigger time observed in
previously reported step-ramp tracking experiments. The
effects of varying these parameter values on saccade fre-
quency and trigger time is illustrated in Fig. 13. Crucially,
using experimental data from (61), we calculated optimally fit
parameter values individually for our participants to validate
our parameter value choices in describing human saccade-
pursuit coordination (described inModel Fitting).

A simplified model of saccade dynamics and refractory
period were implemented from (62) (see Saccade Motor
Pathway below) to illustrate how this decision model can
be incorporated into a global framework of oculomotor
control.

Pursuit Motor Pathway

The pursuit motor pathway transforms the predicted retinal

slip, cRSpred
, into an oculomotor command that is sent to the

premotor system and eye plant. It is adapted from the image
velocity motion pathway and positive efferent copy feedback
loop used by previous models (30, 32, 63). The pathway (Fig. 2,

Table 1. Values of noise parameters used in sensory
pathway Kalman filtering for retinal position, velocity,
and acceleration

Parameter Name Parameter Symbol Parameter Value

Additive sensory noise
variance

R2
0:252

7:52

502

2664
3775

Signal-dependent sensory
noise covariance

D2
1 0 0

0 1:52 0

0 0 1

2664
3775

Estimated state variability Q2
0:1

1

30

2664
3775

Internal sensory process
noise

X2
0:1

0:3

10

2664
3775
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Pursuit Motor Pathway, Eqs. 13–15) contains a nonlinear trans-
fer function (G) to convert the RS input into an oculomotor
command, a second-order filter (H) to adjust the time course of
inputs, and a variable gain element (A). The parameters were
taken fromKrauzlis and Lisberger, 1994 (30, 32, 58).

GðcRSpredÞ ¼ 7cRSpred ð13Þ

H sð Þ ¼ 352

s2 þ 2ð Þ 0:8ð Þ 35ð Þs þ 352
ð14Þ

A ¼ 0:9 þ ftrial ð15Þ

where s represents the Laplace variable, and ftrial�N 0; r2
purs

� �
,

with r2
purs ¼ 0:05. The purpose of this noise term in Eq. 15 is to

simulate the trial-by-trial variability in pursuit gain observed
in human behavioural responses, thus capturing a realistic
level of pursuit variability and consequent trial-by-trial vari-
ability in sensory signals based on pursuit performance (64,
65). Although sensory uncertainty is a major source of pursuit
variability (5), behavioral evidence suggests further motor-
related variability influencing pursuit gain that can be dissoci-
ated frommotion perception (66, 67).

The output of this image velocity motion pathway is sent
to a leaky integrator with positive feedback, maintaining eye

velocity when cRSpred

k ¼ 0. The leaky integrator is character-
ized by a single time constant, sp ¼ 100 ms. The positive
feedback loop contains a linear gain element, 1

sp
, balancing

the strength of positive feedback versus leak (30, 32).

Saccade Motor Pathway

After saccade confidence reaches the decision threshold,
the saccade motor pathway (Fig. 2, Saccade Pathway) trans-
forms a desired saccade amplitude into an oculomotor com-
mand that is sent to the premotor system and eye plant. It
has been shown that saccade amplitude is programmed by

the predicted position error, cPEpred
, at trigger time (68, 69).

The purpose of this saccade model was not to exactly repro-
duce all aspects of saccade dynamics, but rather to embed a
simple, illustrative model of saccade execution within our
global framework of oculomotor control. A motor delay of
40ms was implemented between the time of saccade confi-
dence threshold crossing and the execution of the saccade.
Themodel of saccade dynamics is adapted from the local feed-
back model and bilateral burst neuron discharge rate pulse
generator (Fig. 2, PG) used by Blohm et al. (62), J€urgens et al.
(70), and Scudder (71). In this pathway, the desired saccade am-
plitude is compared against an internal estimate of executed
eye movement through negative feedback from a resettable
integrator (Fig. 2, RI), providing an estimate of ongoing
motor error without requiring visual feedback. This motor
error is sent to a pulse generator, providing a saccadic motor
command sent to the premotor system and eye plant. The
pulse generator was based on the bilateral burst neuron dis-
charge rate proposed by Van Gisbergen et al. (72):

y ¼
�bmð1� e

x�e0
bk Þ if x < e0

bmðe
x�e0
bk � e

�x�e0
bk Þ if � e0 < x < e0

bmð1� e
�x�e0

bk Þ if x > e0

8>>>><>>>>: ð16Þ

where the input, x, is the motor error and the output, y, is a
saccadic motor command approximating the main sequence
relationship between saccade amplitude, peak velocity, and
duration (73). The parameters used match (62) (i.e., e0 = 1
deg; bm = 600 deg/s; and bk = 3 deg). Note, that we used an
oversimplified saccade generator since saccades were only
produced for illustrative purposes and did not affect the
smooth pursuit or decision mechanisms. Also, we were only
interested in the temporal evolution of trials up until saccade
trigger; we thus omitted any variability terms in saccade am-
plitude that would be required for more realistic catch-up
saccade behavior. Furthermore, we avoid speculating on the
problem of how retinal signals during the saccade are

Predicted RS

Smooth Pursuit Pathway

G

Eye 
Position

+H A
�

P

�
P
s +1

1

�
P

Predicted PE

Saccade Pathway

+PG
1

(T
1
s +1)(T

2
s+1)
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T
1

1

s

+

Final Common Path & Eye

+
-

Figure 2. Overview of motor pathway. Pursuit motor commands are continuously generated from predicted retinal slip, whereas saccade motor com-
mands are generated from predicted position error when saccade confidence reaches threshold. Pursuit and saccade motor commands are linearly
combined in the final common pathway, representing the neural integration of oculomotor commands for maintaining gaze position and the neuromus-
cular dynamics of eye motion. In the pursuit pathway, G is a nonlinear function, H is a second order filter, A is a linear gain, sp is a time constant for leaky-
integrated positive feedback. In the saccade pathway, PG stands for pulse generator, RI stands for resettable integrator (which tracks the progress of
each saccade and is reset at saccade offset). In the final common pathway, T1 and T2 are time constants describing the dynamics of eye motion and pa-
rameters of the final neural integrator.
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processed (but see Ref. 74) and how theymay influence sub-
sequent pursuit (75, 76).

Final CommonMotor Pathway and Eye Plant

Oculomotor commands from the pursuit and saccade
pathways are linearly added then sent through the premotor
system to the eye plant. The premotor system consists of the
sum of the motor command (with gain = T1 = 170 ms) and its
integral, producing the pulse-step innervation pattern
required to displace the eye and maintain eccentricity (77).
This gain term ensures an appropriate weighting between
the proportional and integral components. The eye plant is
modeled as an overdamped, second-order system with time
constants T1 = 170 ms and T2 = 13 ms. No additional motor
noise was added to the eye plant, as themoment-by-moment
variability in sensory observations and trial-by-trial variabili-
ty in pursuit gain that we implemented provides a suffi-
ciently realistic distribution of motor variability (5, 78, 79).

Simulations

The model was numerically simulated in MATLAB R2018b
(MathWorks, Natick, MA) using 1-ms discrete time steps. We
simulated eye movements in response to horizontal step-
ramp target motions selected to reproduce behavioral experi-
ments of pursuit initiation (Figs. 4 and 5; compare to Ref. 13)
and pursuit maintenance (Figs. 6, 7, and 8; compare to Ref.
14). For pursuit initiation, we simulated target position steps
(PS) between 1 to 12 degrees in one-degree increments, target
velocity steps (VS) of ±10deg/s and ±20deg/s (where positive
values represent right and negative values represent left), and
100 repetitions at each step-ramp condition. For pursuit
maintenance, the initial step-ramp was selected to recross the
initial fixation position in 200ms, thusminimizing initial sac-
cade frequency. The step sizes used were 2, 4, and 6 degrees
with velocity changes of 10, 20, and 30deg/s, respectively, in
the opposite direction. The second step-ramp was selected
using velocity steps of ±10, 20, and 40deg/s with correspond-
ing position steps such to provide a range of target crossing
times between�300ms to 700ms in 20-ms increments (TXT =
�PS/VS), with 50 repetitions per double step-ramp condition.
Using our model, we simulated single trials of eye movement
responses and calculated saccade trigger time (defined as the
duration between saccade onset and the previous change in
target motion) for trials containing saccades. The simulated
distributions of saccade frequency and trigger time as a func-
tion of target parameters were compared with experimental
data. The target parameters for the pursuit maintenance
study were also selected because they test different combina-
tions of (PS, VS) that correspond to an equal target crossing
time and similar time-to-foveation values following the
change in target motion. This allowed us to compare our
model against the time-to-foveationmodel (which predicts no
differences in behavioral responses for combinations of PS,
VS with identical TTF). TTF was calculated at trigger time in
trials with at least one saccade, or in smooth trials by taking
the time average across the first 400ms following step-ramp
onset. Trigger time corresponded to the saccade latency with
respect to PS/VS occurrence and was computed using a
500deg/s2 acceleration threshold (60) to match experimental
data analysis.

To test the influence of sensory uncertainty on saccade
behavior, we repeated simulations using the same double
step-ramp target motion conditions while modifying the var-
iance of the additive and multiplicative noise in position
estimation to 22 deg2 and 1.52, respectively (Fig. 10). We ana-
lyzed the proportion of trials with at least one saccade and
the trigger time of the first occurring saccade after each step-
ramp.

We tested the effects of decision parameter variation on
saccade frequency and trigger time (Fig. 11), by simulating
visual tracking to a �20deg/s step-ramp target with varying
position steps from �4 to 10 degrees (100 repetitions per
step-ramp condition) while varying a single decision param-
eter (leaving the rest at the values originally described).
Decision accumulator leaky integration time constant (ss,
Eq. 12) was varied between 10 to 75ms, saccade confidence
decision threshold (hsaccade) was varied between 3.5 and
4.5, or sensory position extrapolation duration varied from
50 to 250ms (Tsacc, Eq. 8). The code for the full model and
all simulations is available on GitHub (https://github.com/
BlohmLab/SaccadeTriggerModel).

Model Fitting

The goal of model fitting was to use empirical data from
humans performing visual tracking of step-ramp target tra-
jectories (61) to evaluate our choices in parameter values in
our model and quantify the range of parameter values that
can be expected given variability of behavior across partici-
pants. Specifically, the goal was not to use our model to
make quantitative characterizations of individual partici-
pants, but rather to use participant-by-participant data to
evaluate whether our choices inmodel parameters were real-
istic. We implemented fitting using maximum-likelihood
estimation and the Bayesian Adaptive Direct Search (BADS)
toolkit (80) to estimate optimal parameters directly pertain-
ing to the trigger mechanism (Tsacc, ss, hsaccade) for each par-
ticipant (i.e., sensory motion extrapolation time, saccade
decision pathway leaky accumulation time constant, sac-
cade trigger threshold) while keep all other parameters
unchanged. To do so, for each single trial of experimental
data, we used the time-varying values of position error and
retinal slip from the eye tracker as inputs to the model
(PEdet; RSdetÞ (Eq. 1). We then simulated the sensory path-
way (Eqs. 2–9) and saccade decision pathways (Eqs. 10–12)
but did not simulate any motor pathways; thus, the input to
the model was entirely based on the participants’ actual eye
motion with respect to the tracking target, not simulated eye
movements (thus eliminating potential bias from mismatch
between simulated pursuit and human behavior). We calcu-
lated the simulated trigger time and repeated this process
(with the same PE, RS input) 1,000 times to evaluate an em-
pirical probability density function for saccade trigger time
given a single particular trial of experimental data. Using the
empirical trigger time in this trial, we calculated the likeli-
hood of this data point given the empirical (simulated) trigger
time probability distribution. We summed the likelihoods
across all trials for a single participant to obtain the overall
likelihood of the data given the model parameters, and used
BADS to iteratively discover the optimal parameter values to
maximize the overall likelihood across all trials.
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RESULTS
This model of oculomotor control relies on Bayesian esti-

mation of stochastic sensory signals and bounded evidence
accumulation to trigger saccades upon threshold crossing.
The notable novelty of this model is the computation of sac-
cade confidence from a probabilistic prediction of position
error. We define saccade confidence as the log-probability ra-
tio that the image is left versus right of the fovea center.
Saccades are triggered when confidence is leaky accumu-
lated to a threshold value.

Computation of Saccade Confidence

Saccade confidence is computed from the log-probability
ratio of the target being left versus right of the fovea (Eqs. 10
and 11) and leaky integrated over time (Eq. 12). This process
is schematically shown in Fig. 3, where a constant predicted
PE input is used to illustrate the evolution of saccade confi-
dence over time (although in the normal operation of this
model, predicted PE and its uncertainty are time varying
based on noisy and evolving retinal state observations).
Figure 3A illustrates the probability density function for a
predicted PE of 2 degrees with low uncertainty (purple) and
high uncertainty (pink). The probability of the target being
right of the fovea, PRight, is the area under the probability
density to the right of zero (denoted in vertical dashed line).
The natural logarithm of the ratio between PRight and PLeft is
leaky integrated to compute saccade confidence, whose tem-
poral evolution is illustrated in Fig. 3B. With low magnitude
PE, the temporal evolution of saccade confidence is highly
sensitive to uncertainty, and in the case of an unreliable tar-
get, even no saccade would be triggered. Figure 3C illustrates

a predicted PE of 4 degrees, with low uncertainty (purple)
and high uncertainty (pink). Figure 3D shows the time evolu-
tion of saccade confidence for this PE input, whose time
course is much less sensitive to uncertainty because of the
larger magnitude PE. This is from the nonlinearity in the cu-
mulative distribution function evaluated at zero with
changes in mean and variance. Thus, the estimation of sac-
cade confidence accounts for both predicted PE and its
uncertainty, but this computation is more sensitive to uncer-
tainty for targets closer to the fovea.

Decision Process during Pursuit Initiation

To illustrate how sensory signals influence saccadic deci-
sionmaking, Fig. 4 plots single-trial simulations of oculomo-
tor responses during pursuit initiation to two different step-
ramp trajectories known to evoke high (red trace) and low
(blue trace) saccade frequency, as well as a static step of tar-
get position (gray trace). The step-ramp trajectories contain
an abrupt, simultaneous position displacement and constant
velocity shift. This paradigm is commonly used to investi-
gate saccadic decision-making during pursuit because it
allows the experimenter to precisely control retinal state
subsequent to the step-ramp onset (12–14, 60, 81).

In our model, retinal state is estimated from noisy and
delayed sensory observations through Kalman filtering (Fig.
4, B and C) and predictively updated through linear extrapo-
lation (Fig. 4D). This predicted PE is used to compute sac-
cade confidence, which is leaky integrated to trigger
saccades upon threshold crossing (horizontal dashed lines in
Fig. 4E). In Kalman filtering, noisier signals (e.g., RS com-
pared with PE) require more time for accurate estimation,
which is comparable with data suggesting a late, asynchro-
nous influence of RS compared with PE in saccade program-
ming (82). The observation that saccade latency is longer
than pursuit latency is explained by the additional temporal
accumulator in the saccade decision pathway, intentionally
procrastinating decision-making to allow for more accurate
RS information to accrue and influence the decision. Thus,
RS can either enhance or attenuate the evolution of saccade
confidence by updating PE away from or toward the fovea,
influencing the frequency and trigger time of saccades.

To reproduce previous findings (13), we simulated oculo-
motor responses across a range of step-ramp target trajecto-
ries and calculated the proportion of trials with at least one
saccade andmean saccade trigger time. Figure 5 plots saccade
proportion (Fig. 5, A and C) and mean saccade trigger time
(Fig. 5, B and D) for a variety of step-ramp trajectories where
the target velocity either moved toward the fovea (foveopetal)
or away from the fovea (foveofugal). This model captures the
major trends in behavioral data, replicating the minimization
of saccade frequency when target-crossing time (�PS/VS) is
near 200ms (referred to as the smooth zone) (12), which is the
case for a 4-deg step with a target moving at �20deg/s as in
Fig. 5A, or a 2-deg step with the target moving at �10deg/s as
in Fig. 5C (foveopetal condition). Furthermore, the model rep-
licates the finding of long saccade trigger time for targets with
target-crossing times slightly shorter or longer than the 200-
ms smooth zone (compare with Fig. 2 in 13). Overall, the
model reproduces the known trends in saccade trigger during
pursuit initiation.

-5 0 5 10
0

0.2

0.4

0.6

Predicted PE (deg)

P
ro

ba
bi

lit
y 

D
en

si
ty

-5 0 5 10
0

0.2

0.4

0.6

Predicted PE (deg)

0 0.2 0.4
0

2

4

6

Time (s)Time (s)
0 0.2 0.4

0

2

4

6

S
ac

ca
de

 C
on

fid
en

ce

A C

B D

Figure 3. Schematic diagram of the temporal evolution of saccade confi-
dence from constant, probabilistic predicted PE estimates. A: small pre-
dicted PE (2deg) with high (pink) and low (purple) uncertainty. B: this
results in small (pink) and large (purple) saccade confidence values. C:
large predicted PE (4deg) with high (pink) and low (purple) uncertainty. D:
this results in little difference in saccade confidence and highly similar de-
cision trigger time. In B and D, the horizontal dotted line represents the
threshold to trigger a saccade. PE, position error.

CONFIDENCE IN PREDICTED POSITION ERROR TRIGGERS SACCADES

754 J Neurophysiol � doi:10.1152/jn.00492.2019 � www.jn.org
Downloaded from journals.physiology.org/journal/jn at Queens Univ (130.015.244.167) on March 12, 2021.

http://www.jn.org


Decision Process during Sustained Pursuit

The model was also developed to capture saccade deci-
sion-making during sustained pursuit using target trajecto-
ries with an initial Rashbass paradigm to minimize initial
saccades, followed by a second step-ramp during steady
state tracking (double step-ramp paradigm) (14). Figure 6
illustrates single-trial simulations, contrasting smooth and
saccadic pursuit in response to a foveopetal and foveofugal
step-ramp target perturbation during sustained pursuit.

Consistent with saccadic decisions during pursuit initiation,
RS estimates that reduce predicted PE (due to RS and PE in
opposite directions) result in reduced saccade confidence
and subsequent absence of saccade trigger.

Across a range of double step-ramp target trajectories, we
found that the sensory conditions preceding saccade trigger
in simulations were highly comparable with human behav-
ioral data. Figure 7 illustrates the sensory (Fig. 7A) and true
(Fig. 7B) values of RS and PE preceding each saccade. The
region of this phase plot delimited by solid lines is referred
to by de Brouwer and colleagues (14) as the smooth zone.
The slopes of these lines correspond to single time-to-fovea-
tion values. This demonstrates that themodel replicates sim-
ilar correlations between time-to-foveation and human
saccade behavior, namely, that saccades are minimized
when time-to-foveation is between 40 and 180ms (the slopes
of the lines plotted in Fig. 7). Thus, the smooth zone as
described by de Brouwer et al. (60) reflects the range of target
motion parameters that lead to small predicted position
error and low probability of saccade trigger. Furthermore,
the model simulated saccades with unusually long trigger
time occurring when time-to-foveation (TTF) was slightly
outside this range (Fig. 7, black dots; Fig. 9B). Thus, the
model also explains saccadic decisions during sustained
pursuit.

To further evaluate the relationship between this proposed
saccade decision mechanism and previous correlations
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between saccade trigger and time-to-foveation, we compared
the evolution of position error and retinal slip during pursuit
with their resulting saccade confidence values. Figure 8 illus-
trates average saccade confidence contours as a function of
position error and retinal slip, along with the evolution of
position error and retinal slip during single trials of visual
tracking. The onset of step-ramp motion is denoted in circles
and saccade trigger times are denoted in diamonds. During
smooth trials (Fig. 8, black trace), position error and retinal
slip values lead to subthreshold saccade confidence for the

entirety of the trial. During foveofugal target motion (Fig. 8,
red trace), position error and retinal slip values lead to high
saccade confidence and rapid saccade trigger. During some
cases of foveopetal target motion (Fig. 8, blue traces), the ini-
tial step-ramp results in low saccade confidence, which even-
tually increases to threshold with the subsequent pursuit
movement. This explains why long trigger times tend to clus-
ter around the limits of the smooth zone (Fig. 7), since these
trials begin with low saccade confidence that ultimately
evolves toward threshold confidence much later in the pur-
suit trajectory.
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NewModel Predictions

Our model makes a series of novel predictions. First, the
absolute value of velocity change should correlate with sac-
cade frequency and trigger time beyond the relationship
described by the time-to-foveation parameter. Figure 9 illus-
trates saccade proportion (Fig. 9A) and mean saccade trigger
time (Fig. 9B) as a function of time-to-foveation (TTF), sorted
by velocity step for step-ramp motion during sustained pur-
suit. For larger changes in velocity, more position error accu-
mulates over time as the eye accelerates to match target
speed, resulting in more frequent trials with saccade trigger
(Fig. 9A). However, this also results in more uncertainty in
predicted position error (contributed by signal-dependent
noise in retinal slip), and longer trigger times (Fig. 9B). For
smaller velocity changes near the smooth zone, the saccade
decision is more strongly driven by initial sensory position
error. Thus, although these conditions have less trials with
saccade trigger (Fig. 9A), trials with saccade trigger tend to
occur earlier (Fig. 9B), particularly if the step-ramp related
increase in position error matches the direction of any preex-
isting steady-state position error.

A second novel prediction from this model is that increas-
ing the uncertainty of position error estimates will impact
saccade decision-making during pursuit. Increasing pre-
dicted position noise can be achieved experimentally
through Gaussian blurring of the pursuit target and

implemented in the model through an increase of the noise
corrupting sensory observations. Specifically, we predict a
decrease in saccade frequency and an increase in the vari-
ability of saccade trigger time in response to step-ramp tar-
get trajectories with time-to-foveation near the smooth zone
(Fig. 10B) but a minimal impact on saccade trigger time dis-
tributions for negative time-to-foveation trajectories (corre-
sponding to a position step and velocity change in the same
direction; Fig. 10A). This is because the smooth zone corre-
sponds to retinal motion resulting in low predicted PE and
saccade confidence is highly sensitive to sensory uncertainty
for small predicted PE values (as demonstrated schemati-
cally in Fig. 3). When time-to-foveation values are outside
the smooth zone and positive (Fig. 10C), there is a decrease
in the proportion of early saccades and an increase in the
proportion of late saccade. This is explainable by a widening
in the low saccade confidence valley illustrated in the phase
plot in Fig. 8, where the early trajectory tends to occur in
regions with low saccade confidence while eventually exiting
this low-confidence valley, as RS is driven to zero but pre-
dicted PE remains nonzero. Overall, increasing sensory
uncertainty widens the range of tolerable position error esti-
mates that fail to trigger saccades.

To further motivate the parallels between our model and
oculomotor neurophysiology, we simulated a replication of a
cortical microstimulation study to predict saccade frequency
and trigger time distributions. In this experimental study,
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Groh et al. (83) applied microstimulation to middle temporal
area (MT) in macaque monkeys during step-ramp target
tracking. They found that microstimulation evoked an effec-
tive retinal slip vector that systematically modulated both
pursuit velocity and saccade vector and had a complex (but
not analyzed) influence on saccade latency that depended
on the ongoing target motion. Here, we simulated the effects
of microstimulation to areaMT by fixing the value of sensory
RS (i.e., output from Kalman filtering in Fig. 1) during a static
target step. We replicate their observations when the stimu-
lated RS vector is opposite the target position step and make
novel predictions for the case that the stimulated RS and tar-
get position step are in the same direction. Figure 11 illus-
trates single trials of tracking a high contrast, static target
step in control versus MT microstimulation condition in
macaque monkey experimental data (Fig. 11, A and B) and
model simulations (Fig. 11, C and D). In model simulations,
the stimulated RS is þ 10deg/s, matching the electrically
evoked RS vectors in Ref. 83. When the stimulated RS vector
is opposite to the target step (foveopetal, blue, as in 83), this

drives pursuit in the direction opposite to the step (increas-
ing true PE) but extrapolates the target position toward the
fovea (decreasing predicted PE). This results in low predicted
position error (Fig. 11D) and long, variable saccade trigger
times in the stimulation compared with control condition
(Fig. 12A, dark green versus light green/purple). When the
stimulated RS is in the same direction as the target step (Fig.
11, B and D, red trace, novel prediction), predicted PE is
larger than the true PE, resulting in overshooting saccade
amplitudes, but the ceiling effects on the increase in saccade
confidence (as illustrated in Fig. 3, C and D) results in similar
distributions of trigger times (Fig. 12A, dark purple versus
light green/purple).

We additionally investigated how saccade behavior in
this simulated microstimulation paradigm changes with
increased sensory uncertainty. As shown before, simulating
increased sensory position noise (corresponding to a blurred
target) increased the mean and variability of trigger time dis-
tributions (Fig. 12B). When the target step was in the oppo-
site direction as the stimulated RS vector (dark green), there
was a large increase in mean and variability of trigger time
distributions. When stimulated RS vector was in the same
direction as the step (dark purple), there was a reduction in
mean and variability of trigger time distributions. Thus our
model predicts how sensory estimates and uncertainties in
position error and retinal slip interact in the decision to trig-
ger saccades following cortical microstimulation in motion
sensitive area MT, demonstrating that our model is compati-
ble with known neurophysiology of the oculomotor system
and can predict behavioral consequences of neurophysiolog-
ical interventions.

Effects of Decision Parameter Variations

To illustrate the influence of model parameters within the
decision mechanism on saccade behavioural outcomes, we
simulated pursuit initiation for a step-ramp target with a ve-
locity of �20deg/s and position steps between �4 and 10
degrees while varying model parameters (i.e., accumulator
time constant, decision threshold, sensory extrapolation
time). With this target speed, saccades are expected to be
minimized (i.e., smooth zone) when the target step is 4
degrees (12). When increasing the accumulator time constant
(Fig. 13, A and B), instantaneous changes in predicted posi-
tion error (and its estimated variance) have a weaker influ-
ence (i.e., integrated with lower weight) on the evolution of
saccade confidence (Eq. 12). This results in a pervasive
increase in saccade trigger time regardless of target step size
(Fig. 13B) and widening of the smooth zone (Fig. 13A), where
larger transient predicted position error values can be toler-
ated without saccade execution. By increasing the decision
threshold (Fig. 13, C and D), more accumulated evidence of
predicted position error is required before triggering sac-
cades. This leads to a slight widening of the smooth zone
(Fig. 13C) and slight increase in saccade trigger time around
the smooth zone (Fig. 13D). Finally, increasing the motion
extrapolation time to compute predicted position error (Fig.
13, E and F) results in a shift and widening of the smooth
zone (Fig. 13E). Furthermore, the range of position steps near
the smooth zone producing saccades with long trigger time
is widened (Fig. 13F), which is caused by the increased
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Figure 10. Saccade trigger time probability distributions sorted by target-
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Figure 11. A and B: experimental data from macaques performing saccades to static steps in control (A) and MT microstimulation (B) conditions (Figure
from Ref. 83, Copyright 1997 Society for Neuroscience). C and D: single trial simulations using a static target step (þ4deg in red,�4deg in blue) in con-
trol (C) and microstimulation (D) conditions. In the control condition, estimated RS has a mean value around zero (the true value). Predicted PE (PEpred)
and saccade confidence are driven by the target position step, resulting in rapid, low-variability saccade trigger times. In Stim condition, the estimated
RS was fixed to þ 10deg/s, corresponding to stimulation of MT as performed by Groh et al. (83). When the stimulated RS vector was opposite to the tar-
get step (blue, as in 83), PEpred is extrapolated towards zero. This results in a reduction of saccade confidence over time, produding saccade with lon-
ger and more variable trigger time with undershooting saccade amplitude. When the stimulated RS vector was in the same direction as the target step
(red, novel prediction) prediced PE is larger, but this results in similar evolution of saccade confidence and similarly rapid and regular saccade trigger
times with overshooting saccade amplitude. MT, middle temporal area; PE, position error; RS, retinal slip.
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uncertainty contributed by the motion pathway (Eq. 9). The
same trends hold for saccades during sustained pursuit (not
shown).

Using experimental data from human visually tracking
step-ramp targets (61), we used maximum likelihood estima-
tion to estimate optimal fits for decision-making parameters
to test the validity of our choices of parameter values used in
this modeling study. These fitted values are reported in
Table 2. This confirms that our default model parameter val-
ues fell within the range of participants individual model fit
values; however, individual participants parameters were
quite variable.

DISCUSSION
In this model of saccadic decision-making during pursuit,

confidence in predicted position error triggers saccades
upon accumulating to a threshold value. Position error is
predictively estimated from noisy and delayed sensory
observations to compute the evidence that the target is out-
side the fovea (saccade confidence, quantified through log-
probability ratio). This decision mechanism reproduces the
Rashbass paradigm (12), as well as the empirical relation-
ships between time-to-foveation and saccade execution and
trigger time (Figs. 4–8) (13, 14). The model makes novel

predictions about the relationship between target trajectory
and saccade behavior that cannot be accounted by time-to-
foveation correlations. Specifically, families of step-ramp tar-
get motion with identical time-to-foveation should evoke
saccades with longer trigger times near the smooth zone
(time-to-foveation between 40 and 180ms) (14) as changes in
target speed increases (Fig. 9). The model makes further pre-
dictions that increasing sensory uncertainty, such as by blur-
ring the visual target (33), will further reduce the probability
of saccade trigger and increase saccade trigger time variabili-
ty during pursuit, particularly during conditions of low pre-
dicted position error (near the smooth zone; Fig. 10).
Furthermore, the model makes novel predictions about sac-
cade amplitudes and trigger time distributions in a simu-
lated replication of an area MT cortical microstimulation
study (83) (Figs. 11 and 12). Finally, we demonstrate through
empirical model fitting that our choices inmodel parameters
fit the range of human participants (Table 2) and demon-
strate the behavioral effects of variation inmodel parameters
(Fig. 13).

Model Limitations

This model focuses on the visual basis of saccadic deci-
sion-making during pursuit without considering the influ-
ence of learning and selective attention. In testing saccade
behavior at pursuit initiation, Bieg et al. (13) randomized the
timing, position step size, and motion direction but not
motion speed of the target. This could allow for learning
speed priors that modify the initial trajectory (and therefore
ongoing sensory signals) during the initial pursuit accelera-
tion (84–86). In contrast, de Brouwer et al. (14) randomized
all aspects of target motion at the second step-ramp,
attempting to minimize the influence of learning and expec-
tation, thus providing a more ideal data set for evaluating
modeled trigger time distributions. However, selective atten-
tion may also present a confounding influence even in the
absence of learned expectations. It has been shown that
attention is preferentially allocated ahead of pursuit (87, 88),
which can preferentially enhance the precision of sensory
signals (89). Furthermore, attention may have more direct
effects on oculomotor behavior (90, 91), possibly through
influencing normative decision thresholds (92) or accumula-
tion rates (93). Nevertheless, previous modeling studies have
demonstrated a dominant influence of sensory variability
driving pursuit variability (5), suggesting thismodel captures
the dominant influences on saccade behavior despite omit-
ting potential cognitive influences. Although the mecha-
nisms by which these cognitive factors impact saccadic
decision-making warrants further investigation, the model
successfully illustrates principles of saccade-pursuit coordi-
nation and its sensory influences.

Another current limitation that could be addressed in
future research is how evolving sensory signals may influ-
ence saccade programming after saccade trigger. Although it
has been clearly shown that saccade amplitude accounts for
both position error and retinal slip (54, 56, 60), the influence
of retinal slip on saccade amplitude and direction can asyn-
chronously influence the later component of the saccade as
demonstrated by curved saccades during two dimensional
tracking (82). Similarly, when saccade targets are abruptly
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Figure 12. Trigger time distributions for clear and blur target conditions
using ±4-deg target step and 10-deg/s stimulated RS vector. A: with a clear
target, a stimulated RS vector opposite to the step (dark green) caused an
increase in the mean and variability of the trigger time distribution com-
pared with control (light purple, light green), while a stimulated RS vector in
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distribution compared with control. B: with a blurred target, the trigger time
distribution in control condition had a larger mean and variance compared
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direction as the target step (dark purple), there was a reduction in mean and
variability of the trigger time distribution compared with control, while a stimu-
lated RS vector opposite to the target step (dark green) further increased the
mean and variability of the trigger time distribution compared with control.
RS, retinal slip; stim, simulatedmiddle temporal area microstimulation.
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displaced before saccade onset, saccade trajectories may ini-
tially aim toward the initial target position then curve mid-
flight toward the final target location (94, 95). This suggests
saccade programming is not limited to the information at
saccade trigger time, but can still incorporate visual informa-
tion that only becomes available subsequently (due to
delays). Furthermore, during countermanding tasks, errone-
ously executed saccades have a latency-dependent reduction
in amplitude (96), suggesting that the stop signal can still
influence amplitude programming even after saccade trigger
time. Thesemodifications and curvatures in saccade trajectory
have been linked to evolving position error estimates after sac-
cade trigger time (97–99). Thus, a potentially interesting
extension of thismodel could investigate how changes in post-
trigger predicted position error could influence saccade
trajectories.

Bounded Evidence Accumulation and Confidence
Estimation in Decision-Making

We have applied the framework of recurrent Bayesian esti-
mation and bounded evidence accumulation toward model-
ing saccadic decision-making in an oculomotor control task.
This modeling framework has previously been successfully

applied to perceptual decision-making, simulating choices,
reaction times, and postdecision confidence (25). Recently,
the concept of confidence estimation has been considered
central to the decision process itself (100–102), reflecting the
posterior probability that an action is appropriate given the
accumulated evidence and potential biases/priors (36).
Confidence has been shown to evolve dynamically over the
course of evidence accumulation (103) and acts as a critical
quantity inmultisensory (104) andmultistage (105) decision-
making. The agreement between model simulations and
data suggests the important role of confidence estimation in
saccade trigger during pursuit. Thus, we validate previous
perceptual decision theory in a novel oculomotor control do-
main, demonstrating that confidence estimation is also a
fundamental principle inmotor coordination.

Generalizability of Saccade Confidence as a Decision
Variable

A major feature of the proposed decision mechanism is
the generalizability of saccade confidence as a decision vari-
able compared with the previously hypothesized time-to-
foveation parameter. Recall that time-to-foveation is defined
as the negative ratio between position error and retinal slip.
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Figure 13. Effects of decision parameter variation on saccade proportion and saccade trigger time during pursuit initiation with a target velocity of
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Table 2. Value of decision parameters used in model simulations and estimated parameter fits from empirical
data (61)

Parameter Name Parameter Symbol

Parameter Value in

Main Simulations

Empirical Fitted

Value (Means ±SD)

Range of Empirical

Fitted Values

Motion extrapolation time constant Tsacc 125ms 71 ± 34ms 8–142ms
Decision integration time constant ss 25ms 13 ±5.6ms 6.6–27ms
Decision threshold hsaccade 4 6.5 ± 1.2 3.9–7.9
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This value rapidly grows to infinity as retinal slip approaches
zero. Thus, although the parameter correlates with saccade
behavior after an abrupt change in target motion (14), it is
unsuitable as a decision variable for general saccade trigger.
In contrast, the mechanism proposed here can explain sac-
cade trigger to both stationary andmoving targets.

The proposed decision mechanism comparing the evi-
dence of the target being on opposite sides of the fovea was
inspired by the topographic organization of excitatory and
inhibitory lateral connections across the superior colliculus
(106) and physiological evidence that fixational stability
results from balanced neural activity in populations with
opposing movement tendencies (107). An alternative model
comparing the evidence of the target being inside versus out-
side the fovea requires defining an explicit foveal deadzone
for saccade trigger (108). Instead, our mechanism lacks an
explicit deadzone, so the size of the smallest possible sac-
cades is only limited by the uncertainty in predicted position
error, agreeing with evidence toward a common neural
mechanism underlying the control of saccades and micro-
saccades (109, 110).

The model is also compatible with extensions to describe
saccade trigger during visual tracking of two-dimensional
target motion. This is in contrast with the time-to-foveation
model, which is based on the linear extrapolation and inter-
section of eye and target trajectories in time; however, eye
and target trajectories do not generally intersect in two-
dimensional motion. In our framework, a similar saccade
confidence estimator may compute the log-probability ratio
of the target being above versus below the fovea. These confi-
dence estimators could then be combined to additionally
account for vertical and oblique saccade trigger. A challenge
would be that independently estimating horizontal and ver-
tical components results in a loss of estimated covariance
information. One solution that optimally accounts for covar-
iance is estimating two-dimensional saccade confidence
through the Malahanobis distance (111, 112) between the
fovea and the probabilistic estimate of predicted position
error. This measure provides a normalized distance similar
to a z-score, uniquely specifying the probability that a refer-
ence point (e.g., the fovea) falls within a multivariate distri-
bution (e.g., 2D predicted position error). Using probabilistic
population coding, this log-probability ratio could be imple-
mented through a linear read-out from the two-dimensional
representation of predicted position error (see next section
for details). Thus, the Malahanobis distance could provide
an efficient computational (normative) mechanism enabling
a sequential probability ratio test to estimate saccade confi-
dence in two-dimensional tracking.

Neurophysiological Implementation

Our model normatively outlines the computational steps
underlying saccadic decisions, which has implications on
the signals and connectivity of its neural implementation.
We thus find it useful to speculate on its potential neuro-
physiological implementation. First, the model suggests that
motion and position information must converge into a pre-
dictive position error estimate that ultimately informs the
saccade decision process. Motion information supplied by
the middle temporal area (MT) has been shown to causally

influence saccade metrics and latency (83, 113). Activity in
the superior colliculi (SC) indicates position error during
pursuit (114, 115) and causally influences saccade trigger dur-
ing pursuit (116, 117). MT and SC both communicate with the
frontal eye fields (118, 119), an area involved in predictive
oculomotor control (120, 121). Neurons in this area contain
the necessary position and motion information to support
this predictive saccade decision (52, 122). Similarly, the lat-
eral intraparietal area (LIP) is interconnected with MT and
FEF and has also been implicated in oculomotor control and
evidence accumulation (123–126). Neuronal activity in FEF
and LIP predicts saccade choice and timing consistent with
bounded accumulator models (127, 128). Models suggest that
neural pathway from FEF through the caudate nucleus ter-
minating in the SC is capable of reading out threshold cross-
ing to trigger saccades (91, 129).

Brain regions in this distributed, interconnected oculomo-
tor network might represent information through probabilis-
tic population activity (130). This representation allows
encoding of uncertainty information that can be used to
drive efficient probabilistic computations. For example, if
this population variability is Poisson-like, then log-likeli-
hood ratios can be computed from linearly-weighted popula-
tion readouts (131, 132). An alternative hypothesis suggests
that the dynamics of neuronal population responses sample
the inferred posterior distribution, where estimated uncer-
tainty is encoded through temporal variability of neural pop-
ulation activity (133). Both neural implementations allow
time-varying estimates of uncertainty and thus both are
compatible with our proposed saccade decision model,
although they have different implications about how this in-
formation should be read-out (linear versus nonlinear
decoding) by downstream neural circuits. Although the hy-
pothesis that the position error information represented in
the SC can be predictively motion extrapolated remains
unsettled (114, 134, 135), a unified Poisson-like probabilistic
population representation of PEpred would allow the proba-
bility favoring a saccade (Eq. 10) to be computed by a linear
readout. The comparison between PLeft

k and PRight
k in Eq. 11

could be performed through the reciprocal inhibition
between left and right SC (andmedial versus lateral SC when
considering two-dimensional tracking) (106, 107). Single-
neuron recordings in the rostral SC (corresponding to foveal
target positions) suggest shifting PE tuning curves with tar-
get motion (114, see their Fig. 11, C and D). Thus, relating
PEpred in our model with the distribution of activity in the
SC seems to unify the observations that both increased spa-
tial blurring of a single target (136) or using larger targets
arrays (137) diminish the frequency of catch-up saccades by
increasing PEpred uncertainty in our model or increasing
the spread of neural activity between the left and right ros-
tral SC. Thus, the proposed decision mechanism comparing
the probabilities PLeft and PRight implements the “dynamic
equilibrium” hypothesis (107), rather than a dedicated “fixa-
tion zone” in the rostral SC (138).

Prediction and Confidence Estimation in General Motor
Coordination

Prediction in coordinated motor decisions is pervasive in
our daily lives. For example, when manually intercepting a
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moving object, humans predictively direct their reaching
movements to account for sensorimotor delays and object
motion (139–142). Prior to executing the reach, saccades are
typically directed to this predicted target location (143, 144),
and both movements have correlated timing and end point
error (145). This suggests that both eye and arm movement
metrics are programmed by a common internal representa-
tion of the predicted target trajectory (146), and we suggest
that similar confidence-based decision strategies may
explain the trigger time for interceptive reaching decisions.
Thus, prediction is an important component in ensuring
accurate movements, and confidence estimation can evalu-
ate the appropriateness of a particular action given the
uncertainty of the predicted state.

Similar coordinated movements occur in a variety of ani-
mal species, who may also utilize similar decision principles
in coordinatingmovements from delayed and uncertain sen-
sory signals. For example, flies (Drosophila) in visually
guided flight perform coordinated smooth and saccadic
turning to accurately orient toward their flight goal (147).
Models including temporal integration of motion informa-
tion have been used to explain this rapid decision-making
(148), but it has not yet been investigated how uncertainty in
visual motion may influence these decisions. As another
example, zebrafishes integrate specific visual features in the
perceptual decision of prey recognition, which can initiate
hunting routines such as convergent saccades, orienting
turns, and capture swims (149). The visual features impor-
tant to prey detection have been described (150), and the
neural circuits mediating prey recognition and the initiation
of hunting have been localized to nonoverlapping popula-
tions in the optic tectum (151–153). Spontaneous tectal activ-
ity independent from retinal inputs, rather than being
random noise fluctuations, has been shown to match the
patterns of activity evoked by ethologically relevant visual
stimuli (154). This structured spontaneous activity can be
interpreted as Bayesian priors to enabling efficient stochastic
decision-making for coordinated orienting responses (155),
although more research is needed into how this structured,
stochastic population activity can robustly coordinate ori-
enting responses. Thus, principles from our model can be
combined with the advanced experimental techniques in
these model animals (156–158) for detailed investigation on
the neural implementation of predictive decision-making
andmotor coordination.

CONCLUSIONS
Our model of saccade decision-making during pursuit

handles the constraints of delay and signal-dependent
noise in the oculomotor system while reproducing estab-
lished trends in saccade frequency and trigger time across
a range of target motion trajectories. The model illustrates
how discretely triggered orienting movements like sac-
cades can be coordinated during continuously controlled
pursuit through predictive, probabilistic evidence (confi-
dence) accumulation. We suggest that this framework of
prediction and confidence estimation represents a funda-
mental principle in stochastic decision-making for senso-
rimotor coordination.
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