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2017.—Reference frame transformations (RFTs) are crucial compo-
nents of sensorimotor transformations in the brain. Stochasticity in
RFTs has been suggested to add noise to the transformed signal due
to variability in transformation parameter estimates (e.g., angle) as
well as the stochastic nature of computations in spiking networks of
neurons. Here, we varied the RFT angle together with the associated
variability and evaluated the behavioral impact in a reaching task that
required variability-dependent visual-proprioceptive multisensory in-
tegration. Crucially, reaches were performed with the head either
straight or rolled 30° to either shoulder, and we also applied neck
loads of 0 or 1.8 kg (left or right) in a 3 � 3 design, resulting in
different combinations of estimated head roll angle magnitude and
variance required in RFTs. A novel three-dimensional stochastic
model of multisensory integration across reference frames was fitted
to the data and captured our main behavioral findings: 1) neck load
biased head angle estimation across all head roll orientations, resulting
in systematic shifts in reach errors; 2) increased neck muscle tone led
to increased reach variability due to signal-dependent noise; and 3)
both head roll and neck load created larger angular errors in reaches
to visual targets away from the body compared with reaches toward
the body. These results show that noise in muscle spindles and
stochasticity in general have a tangible effect on RFTs underlying
reach planning. Since RFTs are omnipresent in the brain, our results
could have implications for processes as diverse as motor control,
decision making, posture/balance control, and perception.

NEW & NOTEWORTHY We show that increasing neck muscle
tone systematically biases reach movements. A novel three-dimen-
sional multisensory integration across reference frames model cap-
tures the data well and provides evidence that the brain must have
online knowledge of full-body geometry together with the associated
variability to plan reach movements accurately.

body geometry; computational modeling; multisensory integration;
muscle spindle noise; stochastic reference frame transformation

INTRODUCTION

Different sensory and motor signals are encoded in different
coordinates in the brain, e.g., early vision in eye/gaze-centered,
primary arm proprioception in shoulder-centered. Conversions
between reference frames are vital to transform signals into

reference frames that are appropriate for processes as diverse
as motor control, decision making, posture/balance control,
and perception (Blohm and Crawford 2007; Buneo et al. 2002;
Flanders et al. 1992; Knudsen et al. 1987; Soechting and
Flanders 1992; Vetter et al. 1999). Previous studies have
suggested that reference frame transformations (RFTs) should
be regarded as stochastic processes that modulate the reliability
of transformed signals (Alikhanian et al. 2015; Burns and
Blohm 2010; Burns et al. 2011; Schlicht and Schrater 2007).
Furthermore, several studies proposed that humans flexibly
select the coordinates that minimize the effect of stochasticity
(Sober and Sabes 2005). Cue reliability-based multisensory
integration studies have shown that stochastic RFTs affect
human behavior (Burns and Blohm 2010; Burns et al. 2011;
Schlicht and Schrater 2007); however, the sources of stochas-
ticity in RFTs as well as the underlying mechanisms of how
RFTs affect transformed signals remain unclear.

To perform RFTs accurately, the brain must have an esti-
mate of three-dimensional (3D) body articulation (Blohm and
Crawford 2007), i.e., an internal estimate of different body
parts with regard to each other (such as eye relative to head
translation) as well as an estimate of joint angles (such as
head/eye orientations). Whereas the former is likely learned
and does not change, the latter could stem from at least two
sources, noisy afferent sensory signals (proprioception) and
efferent copies of motor commands. Both signals are inher-
ently variable due to the uncertainty of sensory reading and the
variability of neuronal spiking (Poisson noise). Several studies
have suggested that varying body articulation, e.g., the head
roll (HR) angle, increases the behavioral variability due to
signal-dependent sensory and neural noise affecting the RFT
(Alikhanian et al. 2015; Burns and Blohm 2010; Burns et al.
2011; Schlicht and Schrater 2007). Signal-dependent sensory
noise can arise from variability in the muscle spindle activity,
the vestibular system, or both (Cordo et al. 2002; Faisal et al.
2008; Lechner-Steinleitner 1978; Sadeghi et al. 2007; Scott
and Loeb 1994). Thus larger joint angle estimates are accom-
panied by higher uncertainty (Blohm and Crawford 2007; Van
Beuzekom and Van Gisbergen 2000; Wade and Curthoys
1997), which results in an increased trial-to-trial variability in
the RFT.

The effect of stochastic RFTs on the reliability of trans-
formed signals has been studied using a multisensory integra-
tion task. Multisensory integration combines different sources
of sensory information to create the best possible estimate of
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the state of our body within the environment in a way that is
generally well-captured by Bayes-optimal integration (Atkins
et al. 2001; Ernst and Banks 2002; Ernst and Bülthoff 2004;
Kersten et al. 2004; Knill and Pouget 2004; Körding and
Wolpert 2006; Landy et al. 1995; Landy and Kojima 2001;
Stein and Meredith 1993; Stein and Stanford 2008). For in-
stance, both visual and proprioceptive information can be
combined in a reliability-weighted fashion to estimate hand
position. It is believed (weak fusion hypothesis, Clark and
Yuille 1990) that before integration, any signals must first be
converted into a common coordinate system; this requires a
(stochastic) RFT. Within this framework, the reliability of the
transformed signal is affected by stochasticity in RFTs
(Alikhanian et al. 2015), thus modulating the multisensory
integration weights (Burns and Blohm 2010; Burns et al.
2011). It is not clear, however, what the consequences of
varying the noise in the parameters involved in RFT processes
are. More specifically, it is not clear how varying multisensory
weights due to stochastic RFTs affects reaching movements to
visual targets.

Here, we deployed a modified version of the standard
visual-proprioceptive integration-based reaching task (Sober
and Sabes 2003, 2005; van Beers et al. 1999) to investigate
systematically the behavioral consequences of biases and vari-
ability in sensory estimates used for stochastic RFTs. We asked
human participants to perform a center-out reaching task while
the seen and actual hand positions were dissociated. In addi-
tion, reaches were performed with the head either straight or
rolled 30° to either shoulder, and we also applied neck loads
(NLs) of 0 or 1.8 kg (left or right) in a 3 � 3 design. Our results
demonstrate that applying the NL increased the variability of
reach movements and biased the reaching behavior toward the
applied load in all HR orientations. Our prediction was that
these effects on reaching behavior can be explained by a
change in multisensory integration weights due to stochastic
RFTs, which consequently enabled us to quantify the relative
contribution of neck muscle spindles to the estimation of HR
angle. To test this hypothesis, we implemented a novel 3D
stochastic model of multisensory integration across reference
frames. Our model was able to capture the pattern of behav-
ioral data well and allowed us to make two main conclusions:
the effect of NL on reaching behavior can be explained by
changes in multisensory weights due to stochastic RFTs and
the source of this stochasticity in RFTs is signal-dependent
noise.

MATERIALS AND METHODS

Participants

Nine healthy humans (eight men) between 20 and 35 yr of age with
normal or corrected-to-normal vision participated in our reaching task.
They performed their reaching with their dominant, right hand.
Experimental conditions were approved by the Queen’s University
General Research Ethics Board, and all of the participants gave their
written consent. Monetary compensation was provided for participat-
ing in the experiment ($10/h).

Apparatus

A virtual reality robotic setup (KINARM end-point robot; BKIN
Technologies) was used for performing the center-out reaching task.
Participants stood in front of the robot while positioning their head by

resting the forehead on the robot in front of the screen and their chin
on a chinrest. Participants grasped a vertical handle attached to the
robotic arm to reach to the viewed target on the mirrored surface. The
vision of participants’ hand was occluded using an opaque board, and
eye movements were tracked using embedded technology (EyeLink
1000; SR Research). A pulley system and a helmet were used for
measuring the HR and NL (see Fig. 1, A and C).

Task Design

Participants stood in front of the robot and grasped the handle. At
the beginning of each trial, participants were instructed to position
their hand on the start position (cross) in the center of the display field.
The robotic arm moved the hand toward the center and released it
when the hand was within 3 cm of the central cross; a red dot
representing hand position appeared at this point. After the participant
positioned the hand correctly on the cross, one of the eight targets,
distributed evenly on a circle with radius 10 cm, appeared. Participants
were instructed to move through the target quickly and accurately while
keeping their gaze fixated on the center cross. Once the participant’s hand
begun to move (85 mm/s velocity threshold), the hand cursor disap-
peared. If they reached the target in �750 ms, the trial was successful and
participants would hear a success beep, otherwise a failure beep was
played indicating that the trial had been aborted and would have to be
repeated. At the end of each trial, the center cross disappeared and
participants had to wait 500 ms to start the next trial. The next trial started
with the reappearance of the center cross and the movement of the robotic
arm driving the participant’s hand to the start position. This was to ensure
that participants did not have visual feedback of the performance of their
previous trial.

There were several different conditions in our experiment. The
hand was physically shifted randomly either up/down or left/right
with respect to the visual feedback of the hand. For example, partic-
ipants would align their hand cursor to the center cross while their
actual hand position was 2.5 cm left of the cross. This discrepancy
was introduced to enable us to measure the relative weighting of
vision and proprioception in the multisensory integration process,
similar to the logic employed in Sober and Sabes (2003, 2005) and
Burns and Blohm (2010). In addition, the reaching movements were
performed while the participants either kept their head straight or
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Fig. 1. Apparatus. A: KINARM end-point robot arrangement [from http://
www.bkintechnologies.com/ with permission from BKIN Technologies Ltd.,
Kingston, Ontario, Canada]. B: visual targets were distributed evenly on a
10-cm-radius circle. The hand was shifted 2.5 cm either vertically or horizon-
tally while the visual indicator stayed at the center. C: picture of the pulley
system for measuring the head roll and loading the neck; here, the participant
had 30° (30 deg) clockwise head roll and neck load on the left side. D:
schematic of the condition represented in C. The attached indicator on the
helmet was used to measure the head angle.
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rolled their head 30° toward each shoulder and while an NL (0 or 1.8
kg) was applied to the left or right side (the value of the weight was
chosen to stimulate the same force as a 30° HR on neck muscles).
Combinations of different HR and NL conditions are shown in Fig. 2.
We hypothesized that altering HR and neck muscle force would create
a conflict for HR estimation as well as changing the signal-dependent
noise, which will affect the weights of multisensory integration.
Participants completed 640 trials (5 hand positions � 8 targets � 16
repetitions) for each of the 9 combinations of HR/NL, for a total of
5,760 trials (640 � 9) in 6 1-h sessions. To avoid any biases due to a
specific order of experiment conditions, we employed Latin squares
method to counterbalance among different experimental conditions
(Jacobson and Matthews 1996).

Data Analysis

Hand and eye movement were captured with sampling rates of
1,000 and 500 Hz, respectively. MATLAB software was used for
offline analysis: a low-pass filter (autoregressive forward-back-
ward filter, cutoff frequency � 50 Hz) was used to smooth the
acquired data. First and second derivative of hand position data
were calculated (using a central difference algorithm) to obtain
hand velocity and acceleration. Trials in which participants moved
their eyes after the visual target is displayed or moved their hand
in a predictive direction except the target direction were removed
(3% of overall trials). The time span from when participants started
to move until their hand crossed a 9-cm circle is defined as the
initial movement duration. Movements were typically straight and
had very little curvature; thus movement angle was derived through
regression of data points acquired throughout the initial movement
duration. Since the visual and proprioceptive hand position were
dissociated, we defined visual movement as the movement obtained
when subtracting visual hand from target information (darker gray
arrow, Fig. 1B) and proprioceptive movement as the movement
direction obtained when subtracting proprioceptive hand position
from the visual target information (lighter gray arrow, Fig. 1B).
Subtracting predicted visual (proprioceptive) movement from the
measured movement angle yielded the directional visual (propriocep-
tive) movement errors, which we used for our analysis. We then used
an analytical model to capture the pattern of movement errors mea-
sured across conditions and targets (see Model Description below).

Statistical Analysis

An n-way repeated-measures ANOVA was used to assess the
statistical differences (MATLAB 2013a, anovan.m), and post hoc
analysis using the Bonferroni criterion (MATLAB 2013a, multcom-
pare.m) was performed to assess the interaction between different
parameters. A paired t-test (MATLAB 2013a, ttest.m) was used to
assess the statistical significance in reach error variability for different
HR and NL conditions. In all of the statistical analysis, P � 0.001 was
considered as the criterion for statistical significance.

Model Description

The goal of our model was to understand which intrinsic and
extrinsic variables were required to perform the RFTs accurately and,
more importantly, how variation of such variables affects human
movement behavior. To understand the effect of RFTs on reach
planning, we first explain the required steps in our model to plan a
reach movement. Sober and Sabes (2003) proposed a two-step model
for planning a reach movement in which first a movement plan is
calculated by subtracting the hand position from the target position.
Then, this movement plan transformed to a desired change in arm
angles through performing inverse kinematics. We extended previous
models (Burns and Blohm 2010; Sober and Sabes 2003) that consid-
ered two steps for planning a reach movement: 1) calculating the
movement plan and 2) generating the motor command. Several
neurophysiology studies suggested that the movement plan is coded in
visual (retinal) coordinates (Andersen and Buneo 2002; Batista et al.
1999), whereas motor commands are coded in joint coordinates
(Crawford et al. 2004). Following the same logic, in our model, the
two steps were performed in two different coordinates, respectively:
visual and proprioceptive coordinates. Visual information of hand and
target positions were coded as retinal information in gaze-centered
coordinates, Xh � (x1,h,x2,h) and Xt � (x1,t,x2,t), respectively (Fig. 3,
left), whereas the proprioceptive information of initial hand position
was coded as joint angles in shoulder-centered coordinates, (�1,h,�2,h)
(Fig. 3, right).

Reference Frame Transformation

To transform information between the visual and proprioceptive
coordinates accurately, the full-body geometry must be taken into
account (Blohm and Crawford 2007). This is specifically important
when the head is not straight, i.e., rotating the head results in shifts of
centers of rotation of the eye, head, and shoulder relative to each other
(Henriques and Crawford 2002; Henriques et al. 2003). To capture
this, we performed a series of rotations (R) and translations (T),
formulated in Eqs. 1 and 2, respectively.

Xrotated � RXoriginal (1)

Where R � � cos� sin�

�sin� cos� �, � � 0 holds for clockwise rotations.

Xtranslated � Xoriginal � T (2)

In the following section, we explain the required steps to transform
hand position from retinal-centered to shoulder-centered coordinates.
The transformation from shoulder-centered to retinal-centered is a
similar process only in the reverse order.

Retinal-to-Shoulder Transformation

As is depicted in Fig. 3, to transform retinal-coded information into
joint-coded information, the theoretically required sequential transfor-
mations can be done by first transforming retinal to head coordinates,
then from head to shoulder, and finally from shoulder to joint
coordinates (note that this is likely different from how the brain is
performing this transformation).

Fig. 2. Experimental conditions. Participants performed the reaching task
under 9 different combinations of head roll (HR) and neck load (NL) condi-
tions during our experiment. CCW, counterclockwise; CW, clockwise.
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Retinal-to-head.

Xh,eye
v � ReyeXh,retinal

v (3)

Xh,head
v � Rhead(Xh,eye

v � Teye-head) (4)

Reye and Rhead are rotations based on eye angle and head angle,
respectively, and Teye-head is the translation between eye and head,
which is the distance between the center of two eyes (eye-centered
coordinate) and the joint of head and neck (head-centered coordinate).
Xh,eye

v is the visual information of hand position in eye-centered
coordinate: subscript “h” represents information related to the hand
position, and the following subscript represents the related coordinate
at that step. In addition, we deployed superscripts “v” or “p” to
dissociate if the information is originally provided by vision or
proprioception, respectively. All of the following parameters have the
same pattern.

Head-to-shoulder.

Xh,shoulder
v � Xh,head

v � Thead-shoulder (5)

Since the body was upright, a translation is sufficient to perform the
transformation between the shoulder and head. In our setup, the
shoulder was located downward and to the right of the head.

Shoulder-to-joint.

�h,joint
v � A�x0�Xh,shoulder

v (6)

A(x0) is the forward kinematic matrix and has the same form as Eq.
7 by Burns and Blohm (2010), since our experimental configuration is
the same. To transform the information from joint angle coordinates

to retinal coordinates, the same procedure can be performed only in
the reverse order [since we used the same configuration as Burns and
Blohm (2010), both forward and inverse kinematic matrices have the
same format].

In addition to the full-body geometry, we considered the noise of
transformation in our model. Similar to Burns and Blohm (2010), we
have two noise components resulting from the transformation: fixed-
transformation noise (�fT

2 ) to simulate the fact that any transformation
has a cost (Sober and Sabes 2005) and variable transformation noise
(�VT

2 ) to simulate the different head orientations and NL conditions of
our experiment (this is the same as the variability in the estimated
head angle).

Estimating Head Angle

As mentioned in the previous section, participants performed
reaching with different HR and NL conditions. Therefore, our model
must include a head angle estimation component as a crucial part of
the RFT processes. Previous studies showed that humans combine
visual, vestibular, and neck proprioceptive information for estimating
head orientation, similar to a Bayesian optimal observer (Alberts et al.
2016; Clemens et al. 2011; Mergner et al. 1983, 1991, 1997). For
instance, Mergner et al. (1991) demonstrated that the stimulation of
neck muscles by rotating the trunk on a fixed head caused a sensation
of head rotation and also increased the uncertainty of head position
estimation. In addition, two studies carried out in Medendorp’s group
(Alberts et al. 2016; Clemens et al. 2011) demonstrated that the noise
in both vestibular and proprioceptive information should be consid-
ered signal-dependent. Thus, following the same rationale, we in-

Fig. 3. Model schematic. To perform the reach
movement successfully, initial hand position
(IHP) is calculated in both visual and proprio-
ceptive coordinates. In visual coordinates, IHP
is computed by transforming proprioceptive
information into visual coordinates. Visual and
transformed proprioceptive information are
weighted and combined based on Bayesian
theory. Movement vector is calculated by com-
paring the estimated IHP and target positions.
The same process takes place in proprioceptive
coordinates to generate a proprioceptive IHP
estimate. With the use of inverse kinematics,
the transformed movement vector and IHP can
be combined to calculate the movement plan
based on the required changes in joint angles.
The blue box represents the reference frame
transformation (RFT) process. RFTs are per-
formed by considering eye and head orienta-
tion as well as the translations (transl.) between
rotation centers of the body. Head orientation
is estimated by combining visual/vestibular
and neck muscle spindle information using
Bayesian statistics (see MATERIALS AND METH-
ODS for details). �INV, multisensory weight for
visual information in proprioceptive coordi-
nates; �MV, multisensory integration (MSI)
weight for visual information in visual coordi-
nates; �1 and �2, joint angles in shoulder-
centered coordinates; 3D, 3-dimensional; deg,
degrees; rel., relative to.
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cluded NL in our experimental condition with the goal of investigat-
ing the contribution of the mentioned sources of information for
estimating the head angle. Assuming that each source of information
has a Gaussian distribution, the head angle signal has a Gaussian
distribution as well, and its mean and variance can be estimated as
follows:

�HA
2 �

�V/V
2 	 �NM

2

�V/V
2 � �NM

2 (7)


HA �
�HA

2

�V/V
2 	 
V/V �

�HA
2

�NM
2 	 
NM, (8)

in which �HA
2 , �V/V

2 , and �NM
2 are associated variability in head angle

estimation, visual/vestibular information, and neck muscle informa-
tion, respectively, and 
HA, 
V/V, and 
NM are the associated means
in the same order. Therefore, we also were able to extract the relative
visual/vestibular vs. neck muscle contribution in estimating head

angle (C �
�NM

2

�V/V
2 ).

As mentioned earlier, one of the key features of our model is
including signal-dependent noise in our RFTs: higher signal value
(due to HR) results in higher variability of both vestibular and neck
muscle spindle signals. In addition, applying the NL increases the force
on the neck muscle, which results in higher variability of the neck muscle
spindle signal. In the conditions of applying the NL while the head is not
straight, the two forces on the neck muscle are combined to drive the
predicted neck muscle force. Therefore, we differentiated the variability
for the head straight and no load condition from the other HR and NL
conditions. Similar to Vingerhoets et al. (2009), we used a linear model
to explain the increase in variability due to increase in the signal value:

�V/V
2 � �V/V,h0

2 � head roll 	 �V/V,h�0
2 (9)

�NM
2 � �NM,h0

2 � muscle force from �HR & NL� 	 �NM,h�0
2 , (10)

in which �V/V,h0
2 and �NM,h0

2 are visual/vestibular and neck muscle
variability for head straight condition and �V/V,h�0

2 and �NM,h�0
2 are the

ones for other experimental conditions. This will result in having

HA,h0 and 
HA,h�0. At the final step, the required head angle for the
transformation (�HA) is derived by scaling the estimated head angle
(
HA, obtained by sampling from the above Gaussian distribution) by
a gain factor, �: �HA � �	
HA.

Multisensory Integration

To estimate the initial hand position (IHP), visual (V) and propri-
oceptive (P) information are combined using multisensory integration
principles. In our model, the multisensory integration is happening
twice: once in visual coordinates (coded in Euclidean) to calculate the
movement vector (MV) and once in proprioceptive coordinates
(coded in joint angles) to generate the motor command using inverse
kinematics (INV). We assumed that each piece of information has a
Gaussian distribution (before and after RFTs), and, therefore, using
multivariate Gaussian statistics, the mean and covariance of the
combined IHP estimated from vision (V) and proprioception (P) in
each coordinate can be written as:

�IHP � ��P
�1 � �V

�1 ��1 (11)


IHP � �IHP�P
�1
P � �IHP�V

�1
V, (12)

where �IHP is the covariance matrix of IHP and �V and �P are
covariance matrices of visual and proprioceptive information, respec-
tively. Similarly, 
IHP, 
P, and 
V are the mean values (in the vector
format) for IHP, visual, and proprioceptive information. Therefore,
the visual weight in each of the visual and proprioceptive coordinates
is calculated as:

�MV � �IHP,v�V,v
�1 (13)

�INV � �IHP,p�V,p
�1 , (14)

where �MV is the multisensory integration weight for visual informa-
tion in visual coordinates and �INV is the multisensory weight for
visual information in proprioceptive coordinates. Additionally, �IHP,v

is the covariance matrix of IHP in visual coordinates, and �V,v is the
covariance matrix of visual information in visual coordinates. Simi-
larly, �IHP,p is the covariance matrix of IHP in proprioceptive coor-
dinates, and �V,p is the covariance matrix of visual information in
proprioceptive coordinates.

Final Motor Command and Movement Direction

After estimating the IHP, the desired movement vector is calculated
by subtracting the hand position from the target positon: x �
tar � 
IHP,v. We used the velocity command model (Burns and Blohm
2010; Sober and Sabes 2003) to transform the desired movement

vector to the required motor command: ẋ � J���J�1��̂�x {where J is
the Jacobian of the system, � is the actual joint configuration, and �̂ is
the estimated joint angle in the proprioceptive coordinates [J(�) and
J�1(�) have the same form as Eqs. 16 and 17 in Burns and Blohm
(2010)]}.

At the final step, the movement direction is calculated by trans-
forming the movement command from Euclidean coordinates to polar
coordinates using the following equations:

r � �x2 � y2 (15)

tan� �
y

x
. (16)

Generating Quantitative Model Predictions

To generate our model predictions, we used a Monte Carlo ap-
proach (Binder and Heermann 2002); we assumed that the sensory
information (visual and proprioceptive information of initial hand
position and visual/vestibular and proprioceptive information of head
position) can be sampled from a Gaussian distribution with a specific
mean and covariance matrix. Then, the RFT procedure is performed
on each sample based on sampled HR signals to obtain the distribution
of the transformed signal. The movement direction was calculated for
each sample, and the final movement mean and variance were calcu-
lated based on this distribution. The model code is available on
GitHub (see ENDNOTE).

Model Parameters

Based on average body physiology, upper arm and lower arm
(including fist) lengths were set constant to L1 � 30 cm and L2 � 45
cm, respectively. Shoulder location was assumed 30 cm backward
from the target and 25 cm rightward of the target, the distance
between eye and top of the head considered 13 cm, and the head
length considered 28 cm (40 cm including the neck). IHPs and target
positions were taken from the experimental data.

There were seven free parameters in the model, i.e., the variance of
both proprioceptive (�p

2) joint angles and visual IHP (�v
2)–we assumed

that the two dimensions in both coordinates are independent with the
same variability: the visual/vestibular vs. neck muscle spindle contri-
bution factor (C), the variance of head angle estimation for head
straight (�h0

2 ), a fixed RFT cost (�fT
2 ), and a variable RFT cost (�VT

2 ).
As mentioned before, �VT

2 resulted from the variability in the head
angle estimation, �HA

2 . By substituting C � �NM
2 � �V/V

2 in Eq. 7, we
were able to extract the variance of neck muscle spindles (�NM

2 ) and
visual/vestibular (�V/V

2 ). Furthermore, we added an additional variance
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component to account for the added variability during performing the
planned movement (�MV

2 ).
To estimate the model parameters, we used a standard maximum

likelihood procedure. We calculated the negative log-likelihood of the
angular reach error data to fit on the proposed model given parameter
set � as:

L��
, �2�y� � ���
n

2
ln�2�� �

n

2
ln��2� �

1

2�2�
i

�yi � 
�2� ,

(17)

where (
, �2) are the mean and variance driven from the model given
the parameter set �, n is the number of data points, and yi is each data
point from the experiment. It should be noted that (
, �2) are
calculated separately for each of the 360 experimental conditions: 8
visual targets � 5 IHPs � 3 HRs � 3 NLs. We then searched for the
set of parameters, which minimized the L� over the parameter space
using “fmincon.m” in MATLAB 2017. Table 1 provides the fitting
values for different model parameters for individual participants along
with the confidence interval for each parameter.

RESULTS

Previous studies (Burns and Blohm 2010; Schlicht and
Schrater 2007; Sober and Sabes 2003) suggest that human
behavior is affected by stochastic RFTs. Burns and Blohm
(2010) showed that HR increases the variability of reach
movements and argued that it could be due to the signal-
dependent noise in the sensed head angles; HR increases the
amplitude of the sensed head angle and the associated variabil-
ity accordingly, which results in noisier RFTs. Here, our goal
was to investigate the sources of stochasticity in RFTs and the
effect of such stochasticity on human reaching movements. To
this aim, we asked human participants to perform reaching
movements while their head was either straight or rolled
toward each shoulder and an NL of 0 or 1.8 kg was applied
to the right or left side in a 3 � 3 design. The experimental
logic was that applying HR and NL will vary the sensed
head angle and the associated noise due to signal-dependent
noise. Since RFTs are based on these sensed angles, apply-
ing HR/NL increases the stochasticity of RFTs, which

modulates the multisensory integration weights and thus
results in more variable and potentially biased reaching
movements compared with the condition where the head is
straight and no load is applied.

General Observations

A total of 51,840 trials were collected, with 1,529 trials
being excluded due to either eye movements (participants were
instructed to fixate their eyes on the center cross) or predictive
hand trajectories. We used directional reach errors to determine
how participants weighted their visual information vs. propri-
oceptive information. Directional reach error (in angular de-
grees) was computed by subtracting proprioceptive (visual)
hand-target direction from overall movement direction (see
MATERIALS AND METHODS), where 0° means no deviation from
proprioceptive (visual) hand-target direction. By introducing
the shift in the visual feedback of the initial hand position, a
discrepancy between visual and proprioceptive information
was created, and, as a result, we could determine how visual
and proprioceptive information was weighted and integrated
based on how participants responded to this discrepancy.

To evaluate how humans weight visual and proprioceptive
information, we compared reach errors for each hand offset
condition. Reach errors are calculated for each target by
subtracting the actual (proprioceptive) hand-target direction
(lighter gray line in Fig. 1B) or visual hand-target direction
(darker gray line in Fig. 1B) from the performed reach move-
ment. We called the first one proprioceptive reach errors and
the second one visual reach errors and used them for different
sections of this article to show the effects more clearly. The
difference in reach errors among different hand offsets indi-
cates that both visual and proprioceptive information were used
during reach planning. Figure 4 displays both proprioceptive
and visual reach error curves across target directions for
different initial hand position conditions for head straight and
no load condition.

To quantify these weights, we fitted a previously proposed
model (Sober and Sabes 2003) to the normalized data. The data

A                                            C

B                                            D

Fig. 4. Reach error curves. Reach errors are calculated for each
target by subtracting the proprioceptive or visual hand-target
direction from the performed reach movement. Solid lines
represent upward/rightward shifts. A and C: proprioceptive
(Prop.) reach error curves: reach errors for horizontal hand shift
(A) and reach errors for vertical hand shift (C). B and D: visual
reach error curves: reach errors for horizontal shift (B) and
reach errors for vertical shift (D). deg, Degrees.
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were normalized by subtracting the 0 hand offset from the other
hand offsets. The model by Sober and Sabes (2003) fits our data
well (Fig. 5; r2 for pooled data across all participants was equal to
0.91 and 0.93, respectively, for A and B) and confirms that the
participants used both visual and proprioceptive information to
plan their reach movements. Based on this close fit of our data to
the model, we can now use this model in a first step to investigate
how HR and NL affect the weighting of vision and proprioceptive
information about the hand.

HR Effect

Participants performed the reach-out movements for differ-
ent HR conditions: 30° counterclockwise (CCW), 0°, and 30°
clockwise (CW) HR. In the first step, we examined whether the
same effect reported by Burns and Blohm (2010) could be
reproduced. As the authors explained, changing the HR had
two different effects on the reach error trajectories. First, the
reach error curves shifted up-/downward, and, second, the
variability of reach errors increased for the tilted head condi-
tions compared with the head upright condition.

Figure 6 depicts the effect of changing HR on both reach
errors and movement variability. As can be seen, there are both
a bias effect and an increased variability effect for altering the
head orientation compared with head straight. The n-way
ANOVA with factors HR, target directions, and participants
showed a significant main effect for altering head orientation,
F(2,98) � 11.85, P � 0.01, and significant interaction between
reaching to different targets and different HR conditions,

F(14,98) � 5.59, P � 0.01, which shows that the effect of
altering HR is different for different target directions. Bonfer-
roni-corrected post hoc analyses indicated that the bias effect
was significant among all of the HR conditions. Regarding
movement variability, we performed a paired t-test across all
participants for each HR condition vs. no HR condition: the
increase in standard deviation due to HR is significant for both
sides, HR � 30° CW vs. HR � 0: t(8) � �3.6133, P � 0.01;
HR � 30° CCW vs. HR � 0: t(8) � �5.6011, P � 0.01.
These results are consistent with the results reported by Burns
and Blohm (2010).

We also used the Sober and Sabes (2003) model to extract
the weights for different conditions. There, the visual and
proprioceptive weights were the two free parameters of the
model (Sober and Sabes 2003), which are used to estimate the
hand position, by integrating visual and proprioceptive infor-
mation, in two different stages: visual weight at the movement
planning stage (in visual coordinates) and visual weight at the
motor command generating stage (in proprioceptive coordi-
nates). Therefore, the weights can be extracted after fitting the
model on the data. As is depicted in Fig. 6, the visual weights
in visual coordinates did not change very much by varying HR;
however, the visual weight in proprioceptive coordinates de-
creased for HR conditions. This is consistent with our hypoth-
esis that higher noise in RFTs results in lower reliability of
transformed signals, which leads to higher weights for propri-
oceptive information in the proprioceptive coordinates com-
pared with the head straight condition.

A                                                   B                          C

Fig. 6. Effect of varying head roll on reach movement behavior. A: reach error curves [solid line for initial hand position (IHP) shifts to right and dotted line
for IHP shifts to left] shifted upward for clockwise head roll and downward for counterclockwise head roll compared with the head upright condition [n-way
ANOVA, F(2,98) � 11.85, *P � 0.01]. B: movement variability increased significantly for rolled head conditions compared with the head upright condition
(paired t-test, *P � 0.01). C: visual weights derived by fitting the Sober and Sabes (2003) model on the data. We did not find any significant change in visual
weights in visual coordinates for different head roll conditions, whereas the visual weights significantly decreased in proprioceptive (Prop.) coordinates.
Significance was tested using paired t-test (*P � 0.05 is considered as a significant difference). deg, Degrees.

A                                             B

Fig. 5. Sober and Sabes (2003) model fit on the data. A and B:
reach error curves are normalized to 0 by subtracting the 0 hand
offset from the other hand offsets. deg, Degrees; Prop., propri-
oceptive.
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NL Effect

In addition to altering the HR, an NL (rightward, no load, or
leftward) was applied. We assumed that if the NL was not
taken into account, there should be no difference in the reach
errors between the NL conditions and no load condition.
Alternatively, if the NL was taken into account in estimating
HR, we expected to observe similar effects as during HR:
up-/downward shifts in reach error curves and increased move-
ment variability. This is because applying an NL while the
head is upright would create a discrepancy between the neck
muscle spindle information and the combined visual/vestibular
information. In addition, due to signal-dependent noise, the
neck muscle information should become less reliable when the
neck is loaded compared with the no load condition. Conse-
quently, the sensed head angle estimated by integrating neck
muscle and visual/vestibular signal should be biased toward the
NL and have more variability, resulting in biased and more
variable movements.

As can be seen in Fig. 7A, applying the NL created an
up-/downward shift of the reach movement error curves. An
n-way ANOVA with factors NL, target location, and partici-
pants revealed a significant main effect for different NL,
F(2,98) � 6.12, P � 0.01. Bonferroni-corrected post hoc anal-
yses indicated that the bias effect was significant among all of
the NL conditions. The interaction between targets and differ-
ent NL was not significant, F(14,98) � 1.06, P � 0.402, which
means that the effect of varying NL on reach movement was
independent of different target directions.

Figure 7B represents the variability of reach errors in the no
load condition vs. NL conditions. As the figure demonstrates,
the variability of reach errors is higher for applying the load
compared with no load condition. We performed paired t-tests
between all three different conditions across all eight partici-
pants. Movement variability was significantly higher for ap-
plying the load on the left side compared with no load condi-
tion, t(8) � 2.7552, P � 0.0283. The paired t-tests revealed no
significant difference among other conditions.

Comparison

So far, we showed that there are both biases and increased
movement variability effects for either applying NL or HR. In

the next step, we compared the variability of reach movements
in the NL conditions vs. HR conditions. Based on stochasticity
in RFTs, we expected to have higher variability for higher
amplitudes of head angle during different experimental condi-
tions. For example, we predicted to have higher movement
variability for applying only HR compared with applying only
NL or have the highest variability for conditions in which both
HR and NL are applied in the same direction.

Based on Fig. 8, the variability in HR conditions is higher
than in NL conditions. We first ran paired t-tests between each
condition separately, and the significant statistical differences
are shown in the Fig. 8. Applying the load on the left side
increased the variability compared with the control condition.
Then, we performed paired t-test between combined similar
conditions: for example, both head upright and NL on either
side are combined and created the overall NL condition. The
paired t-test between HR condition and NL condition showed
a significant difference, t(8) � 2.7444, P � 0.0287; the differ-
ence between HR condition and control condition was signif-
icant as well, t(8) � 2.7444, P � 0.0020; however, the differ-
ence between the control and NL conditions was not signifi-
cant. Together, all of the above observations provide evidence
for the existence of signal-dependent noise in the head angle
estimation and consequently the RFT processes. However, it is
not clear how such stochastic RFTs affect the reaching move-
ment. First, contrary to the initial hypothesis, no modulation of
variability was observed by varying NL while the head was
rolled CW/CCW. In addition, in all of the conditions, we
observed larger effects when HR on reach errors for targets
away from the body (45–135°) compared with the targets
toward the body (215–315°). Both previous models (Burns and
Blohm 2010; Sober and Sabes 2003) fail to explain the men-
tioned effects; both previous models predict constant up-/
downward shift due to HR for all target positions. We propose
that these effects can be explained by a Bayesian framework,
which performs geometrically accurate RFTs.

Modeling the Stochastic RFTs

The above analyses demonstrate that RFTs should be con-
sidered as stochastic process. Therefore, to understand the
effect of such stochastic RFTs on reach planning, we devel-

A                                                 B                          C

Fig. 7. Effect of applying neck load on reach movement behavior. A: reach error curves [solid line for initial hand position (IHP) shifts to right and dotted line
for IHP shifts to left] are shifted upward for applying neck load on the right [n-way ANOVA, F(2,98) � 6.12, *P � 0.01]. Shift in reach error curves for applying
neck load on left is not statistically significant. B: movement variability is increased significantly for applying the load on the left compared with the no load
condition [paired t-test, t(8) � 2.7552, *P � 0.0283]. C: visual weights derived by fitting the Sober and Sabes (2003) model on the data. We only observed a
significant change in visual weight in proprioceptive (Prop.) coordinates due to applying neck load on the left side. Significance was tested using paired t-test
(*P � 0.05 is considered as a significant difference). deg, Degrees.
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oped a Bayesian model of multisensory integration for reach
planning and explicitly included the RFTs.

Figure 3 depicts the schematic of our proposed model. The
working principles of our model are similar to previous ones
(Burns and Blohm 2010; Sober and Sabes 2003) with the
addition of an explicit head orientation estimator (Fig. 9, blue
box). In summary, our model calculates the required reach
movement through first calculating the movement vector in
visual coordinates, by comparing estimated initial hand posi-
tion and target position, and then generates the movement

commands by transforming the movement vector from visual
coordinates to proprioceptive coordinates.

We added several crucial features to the proposed model
compared with the previous models (Burns and Blohm 2010;
Sober and Sabes 2003). First, we explicitly included the RFTs.
The RFT processes transforms information between different
coordinates considering the full-body geometry: head orienta-
tion, eye orientation, head-eye translation, and head-shoulder
translation. In addition, to perform the required transforma-
tions, we included a head angle estimator. The head angle
estimator combines muscle spindle information and visual/
vestibular information in a statistically optimal manner. Simi-
lar to Burns and Blohm (2010), we modeled both mean
behavior and the associated variability for each source of
information: vision, proprioceptive, vestibular, and muscle
spindles. To examine the effect of noisy transformations on the
visual/proprioceptive information, we deployed Monte Carlo
simulations. This method gave us the opportunity to study
explicitly the effect of RFTs on the covariance matrices and
consequently the multisensory integration weights.

Model Fit

In the following section, we first provide the fitting results
for a sample participant (S6) and then evaluate the fitting
results across all nine participants. Figure 9 provides the fitting
vs. data for participant S6. Figure 9, A and B, depicts model
fitting for all different initial hand positions for different HRs
while no NL was applied. As can be seen, our model is able to
capture the reach errors for different IHP and HR conditions
accurately. Figure 9C provides the model prediction for
changes in variance for different conditions. Error bars were
derived using bootstrapping with n � 1,000. Since the results
for horizontal and vertical hand shifts are very similar, for all
of the other conditions, we only provided the results for the
horizontal initial hand shifts (Fig. 9, D–F). Figure 9, D–F,

Fig. 8. Effect of different experimental conditions on reaching movement
variability. Head upright and no load condition (considered as the control
condition) and the combined head roll and neck load (HR/NL) conditions are
sorted based on the expected increase in the variability based on the signal-
dependent noise hypothesis right and left of the control condition. Rolling the
head consistently increased the variability compared with the control condi-
tion. Significance was tested using paired t-test (*P � 0.05 is considered as a
significant difference). deg, Degrees.
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(NL) conditions is shown. A and B: model fit on the reach error curves for varying head orientation without applying neck load: solid line represents results for
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depicts the fitting for varying the NL for different head angles:
0°, � 30°.

After demonstrating that our model was capable of predict-
ing the reach error behavior for a single participant, Table 1
summarizes the fitting results for all of the participants. The
most interesting finding here is the relatively higher contribu-
tion of visual/vestibular signal compared with neck muscle
spindle (C 	 26). This was consistent across all of the subjects.
We also observed very high movement variability across our
participants.

Figure 10 provides the model prediction vs. data for both
reach errors and variances for different experimental condi-
tions. Different participants are differentiated by different col-
ors. We used several different analyses to evaluate the good-
ness of our model fit. First, we calculated r2 value for each
individual participant and the pool of all of the participants:
(54, 61, 56, 75, 50, 60, 66, 71, 71, and 94) for S1–S9 and the
pool of data, respectively. Second, since the variance data were
very noisy, we grouped them in bins and calculated the con-
fidence interval for each predicted variance using the following
equation (Williams 1962):

�n � 1� 	 s2

��⁄2
2 � �2 �

�n � 1� 	 s2

�1��⁄2
2 , (18)

in which �2 is the population variance, s2 is the sample
variance, n is the sample size, and ��⁄2

2 is �2-distribution. Since

we wanted to find the 95% confidence interval, we set
� � 0.05. The boxed colored area in Fig. 10, B and C, is the
calculated confidence interval for the variances. Based on this
analysis, we could see that our model provides a decent fit on
the data.

Finally, we examined whether our residual has a random
pattern by examining the normality of our model residual using
normal probability plot, plotted using MATLAB 2016 “norm-
plot.m.” Figure 11 provides the normal probability plot of our
fitting for all nine participants. As depicted, residual values for
all of the participants approximately have a normal distribu-
tion, which implicates that our model captures all of the
features in the data. More details of how our model explains
the data can be found in APPENDIX.

DISCUSSION

We assessed the effect of neck muscle spindle noise on
multisensory integration during a reaching task and found that
applying NL biased head angle estimation across all HR
angles, resulting in systematic shifts in reach errors. We also
examined the effect of HR on reach errors and observed both an
increase in movement variability and biases in reaching errors,
similar to Burns and Blohm (2010). To examine the effect of noise
on reaching movements quantitatively, we developed a novel 3D
stochastic model of multisensory integration across reference
frames. The effect of neck muscle spindle noise and HR could be

Table 1. Model parameter fits

Participant �p
2, rad2 �v

2, mm2 �fT
2 , mm2 �V/V

2 , deg2 �NM
2 , deg2 �h0

2 , deg2 C �MV
2 , mm2

S1 4.69 � 10�4 13.50 56.68 3.04 � 10�2 7.89 � 10�1 5.66 25.92 100.87
S2 4.86 � 10�4 21.59 56.10 1.49 � 10�1 3.87 5.61 25.76 48.53
S3 4.86 � 10�4 16.50 56.72 1.54 � 10�1 4.00 5.79 26.00 49.00
S4 3.11 � 10�4 9.01 32.71 2.36 � 10�1 5.92 4.97 25.13 11.56
S5 2.45 � 10�4 15.00 26.86 1.08 � 10�1 2.81 5.00 25.98 95.75
S6 4.81 � 10�4 15.03 38.78 1.23 � 10�1 3.20 5.77 26.00 37.97
S7 4.84 � 10�4 20.97 38.81 3.07 � 10�1 7.97 5.80 25.91 26.99
S8 2.87 � 10�4 16.09 38.44 1.18 � 10�1 3.08 5.80 26.00 41.32
S9 3.20 � 10�4 18.99 38.58 2.97 � 10�1 7.68 5.74 25.89 26.98

95% CI [3.13, 4.80] � 10�4 [13.12, 19.47] [33.57, 51.69] [0.94, 2.44] � 10�1 [2.44, 6.30] [5.30, 5.85] [25.61, 26.07] [23.93, 73.62]

�fT
2 , fixed-transformation variance; �h0

2 , baseline head angle estimation variance; �MV
2 , movement variance; �NM

2 , neck muscle spindle variance; �p
2,

proprioceptive variance; �v
2, visual variance; �V/V

2 , visual/vestibular variance; C, contribution factor; CI, confidence interval; deg, degrees; S, subject number.

A                                               B                                      C

Fig. 10. Model prediction vs. observed data for each individual participant. Data for each individual participant was fitted to our model. Each color represents
an individual participant. A: model prediction vs. observed data for reach errors. B: model prediction vs. observed data for reach variability. C: same data as in
B grouped into bins of 0.25 deg2 (mean and standard error). Gray box represents the confidence interval for predicted variances based on our model. deg, Degrees.
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explained by a misestimation of head orientation and signal-
dependent noise in the RFTs between visual and proprioceptive
coordinates. The model was able to reproduce successfully the
reaching patterns observed in the data, providing evidence that
the brain has online knowledge of full-body geometry as well
as the reliability associated with each signal and uses this
information to plan the reach movement in a statistically
optimal manner.

Model Discussion

In our model, the multisensory integration process occurs in
specific reference frames, i.e., in visual and proprioceptive
coordinates. Therefore, signals should be transformed into the
appropriate coordinate frame before integration, which is done
by a series of coordinate rotations and translations. However,
we do not claim that the brain performs these computations in
the same explicit serial way. Alternatively, neurons could
directly combine different signals across reference frames
(Abedi Khoozani et al. 2016; Beck et al. 2011; Blohm et al.
2009; Ma et al. 2006), e.g., by gain modulation mechanisms.
Regardless of the mechanism used, we expect very similar
behavioral outcomes.

In addition, we assumed that all of the distributions remain
Gaussian after performing RFT processes to simplify the re-
quired Bayesian computations. However, in general, this is not
necessarily correct. For example, it has been shown that noisy
transformations can dramatically change the distribution of
transformed signals (Alikhanian et al. 2015). Since the noise in
our RFTs was small enough, the deviations from a Gaussian
distribution are negligible, and this approximation did not
affect our model behavior dramatically. It would be interesting,
however, to examine how considering the actual distribution
and performing the basic Bayesian statistics (Press 1990) will
change the model behavior.

Finally, properly fitting 7 free parameters requires cautious
considerations of 2 main challenges. The 1st is the problem of
overfitting, which we believe was not a problem in our study.
Overall, we had 288 conditions, including 4 variations of initial
hand position, 8 visual target positions, and 9 HR and NL

combinations. Therefore, we had enough conditions and data
points to fit our 7-parameter model accurately. The 2nd chal-
lenge is how to interpret the values of the fitted parameters. We
believe the consistency of fitted values across participants
illustrates the reliability of the approach. For our purpose and
to get insight into the mechanisms underlying our experimental
findings, we were mostly interested in the relative importance
of visual and proprioceptive signals and how those were
affected by HR. Thus we believe that our 7-parameter model
provides a concise mechanistic explanation of the data.

Interpretation of Observations

We suggest that NL biased head angle estimation across all
HR angles, which resulted in systematic biases in reach error
curves. Our model accounted for these shifts by assuming that
NL biases the head angle estimation toward the direction of the
load. It has been demonstrated that the brain can estimate head
orientation by combining vestibular, visual, proprioceptive,
and efference copy signals. The vestibular system and espe-
cially otolith system is very important for estimating the static
head orientation relative to gravitational axes (Fernandez et al.
1972; Sadeghi et al. 2007). Vingerhoets et al. (2009) demon-
strated that tilted visual and vestibular cues bias the perception
of visual verticality. The authors showed that a Bayesian model
that integrates visual and vestibular cues can capture the
observed biases in verticality perception. Furthermore, muscle
spindles play an important role in determining joint position
sense (Goodwin et al. 1972; Scott and Loeb 1994) compared
with the other sources, e.g., tendons or cutaneous receptors
(Gandevia et al. 1992; Jones 1994). Armstrong et al. (2008)
showed that the muscles in the cervical section of the spine
have a high density of muscle spindles providing an accurate
representation of head position relative to the body. Finally,
previous studies have provided evidence that the contribution
of efference copy is only relevant during movement and
decreases toward the end of a movement (Medina et al. 2010).
Therefore, head angle can be estimated from a combination of
visual, vestibular, and neck muscle spindle information.

We included multisensory integration of visual/vestibular
and neck muscle spindle signals in our model. Since we only
modulated neck muscle information, we assumed that a com-
bination of visual/vestibular signals is integrated with neck
muscle spindle information. We were able to retrieve the
relative contribution of visual/vestibular information vs. neck
muscle spindle information by fitting our model to the data. We
found that the contribution of neck muscle spindle information
was very low (in the order of 5%) compared with visual/
vestibular information.

There could be several possible explanations for observing a
relatively low contribution of the neck muscle information.
First, we selected the amount of the NL in a way to apply force
comparable with 30° head tilt. However, due to the complex
organization of neck muscles (Armstrong et al. 2008), we
could not directly measure the changes in muscle activity.
Therefore, to measure the effect of applying load on neck
muscle spindle information accurately, a detailed model of
neck muscle organization would be required. From our design,
it was not possible to dissociate muscle spindle information
from other proprioceptive information. Consequently, the re-
sults provided here can be considered as the overall proprio-

Fig. 11. Residual analysis: normal probability plot. Probability plot is depicted
for each participant different colors. As can be seen, the residual of our model
fit compared with the participants’ data has almost a normal distribution for all
of the participants.
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ceptive information (neck muscle spindle, skin receptors, et
cetera). Moreover, usually neck muscle information agrees
with the skin receptor (i.e., cutaneous receptor) information. In
our task, however, the neck muscle information and cutaneous
receptor information are in conflict, which might be a potential
reason for downweighting neck proprioceptive information
(Körding et al. 2007).

Unexpectedly, we observed that applying HR creates
larger reaching movement biases for visual targets away
from the body compared with visual targets toward the
body. This pattern can be captured by including the full-
body geometry in the RFT processes in our model. Previ-
ously, Blohm and Crawford (2007) showed that to plan a
reaching movement to visual targets accurately, the full-
body geometry (both rotations and translations) has to be
taken into account by the brain. Based on our model, the
displacement of centers of rotation between head- and
eye-centered coordinate spaces caused this asymmetry in the
reaching movements.

In addition to biases, we observed that reaching movements
were more variable in the straight head with NL conditions
compared with the straight head and no load condition. We
considered this as evidence for NL affecting RFTs; we as-
sumed that the neck muscle spindles have signal-dependent
noise (Scott and Loeb 1994). Therefore, applying the NL
increases the noise in the neck muscle spindle information and
consequently the sensed head orientation. This noisier sensed
head angle resulted in noisier RFTs and accordingly more
variable reach movements.

Surprisingly, we observed an asymmetry in the amount of
variability increase by applying NL on the right vs. left side
when the head was upright. One explanation could be that
since all participants were right-handed, they were more sen-
sitive to the changes on the left side. Several imaging studies
demonstrated that right-handed people have bigger left hemi-
spheres with more neural resources associated with the right
side of the body (Bauermeister 1978; Linkenauger et al. 2009a,
2009b). Bauermeister (1978) tested the effect of handedness on
perceiving verticality and showed that right-handed partici-
pants are more responsive to the right-sided stimulus than to
the left-sided stimulus.

Since HR with no NL caused higher increase in movement
variability compared with applying NL while the head was
upright, we expected to see a systematic modulation of move-
ment variability by applying NL while the head was tilted.
Specifically, we expected to observe the highest amount of
movement variability when the NL and HR were applied on the
same side, e.g., 30° CW HR and right-side NL. The logic is
that when both HR and NL are applied in the same direction,
the neck muscle signal indicates the highest angle, and due to
signal-dependent noise the associated variability of head angle
estimations has the highest value. However, applying the load
on the same side as the tilted head did not increase the
movement variability significantly compared with only tilting
the head.

A possible explanation for the lower effect of applying load
on the same side of titled head can be relatively low contribu-
tion of neck muscle spindle information vs. visual/vestibular
information during head angle estimation, provided by our
model. The remarkable observation is that even though the
contribution of neck muscle information is low, applying NL

still has a tangible effect on reaching movements for all HR
conditions, observed both in our data and model predictions.
Another explanation is that the brain might not integrate the
visual/vestibular information in this condition due to the big
discrepancy between neck muscle information and visual/
vestibular information (due to lack of causality; Körding et al.
2007). In our experimental design, we selected the NL value to
simulate the same force as when the head is titled 30° [head
weight � sin(60°) � 0.5 � head weight]. Consequently,
when the head is tilted 30° CW and the load is applied on the
right side, the total force on the neck muscle can be
calculated as 0.5 � head weight (head tilt) 
 0.5 � head
weight (head load) � full head weight; this force is stimu-
lating the neck muscle as if the head were tilted 90°, which
is very unlikely. Therefore, the brain might ignore the neck
muscle spindle information fully.

We interpreted the observed increase in movement variabil-
ity as an indication of signal-dependent noise in the RFT
process. However, an alternative hypothesis to the signal-
dependent noise is uncommon posture (Sober and Körding
2012). According to the uncommon posture hypothesis, we
might have more neuronal resources allocated to the head
straight posture since we perform most of our movements with
the head straight. As a result, HR creates higher uncertainty
due to uncommon posture independent of signal-dependent
noise. Even though this argument might be valid for HR, it
cannot explain the increased movement variability due to
applying NL. In other words, applying NL while the body
posture was kept unchanged still increased the movement
variability, which is in contrary to the uncommon posture
hypothesis.

We observed that changing HR and/or applying NL modu-
lated multisensory weights in both visual and proprioceptive
coordinates. We validated this finding by both fitting Sober and
Sabes’ (2003) model and our new full Bayesian RFTs model to
the data. We found that increasing the noise in the sensed head
angle estimation decreased the reliability of transformed sig-
nals, which we hypothesized is the result of the stochastic
RFTs, and consequently lowered weights for transformed sig-
nals in the multisensory integration process. Therefore, we
conclude that both body geometry and signal-dependent noise
influence multisensory integration weights through stochastic
RFTs.

We demonstrated that head position estimation plays a
vital role in RFT processes required for reach movements.
Previous studies showed that nonvisual information of head
position in space, i.e., from the neck muscle spindles
(Proske and Gandevia 2012) and from the vestibular system
(Angelaki and Cullen 2008; Cullen 2012), declines over
time, providing better information about the relative
changes in head position than about the absolute position.
This behavior is explained based on proprioceptive drift;
afferent discharges decline over time (Tsay et al. 2014),
resulting in imprecise absolute estimation of the head posi-
tion. We evaluated the temporal evolution of head angle
estimation and its possible effect on reaching movements by
dividing each block of our experiment into four bins (data
not shown); however, we found no changes in movement
biases or variability. Therefore, we believe that our exper-
imental design and timing were not appropriate to investi-
gate changes of head angle estimation over time on reaching
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behavior. This question, however, is an intriguing one and
should be investigated in future experiments.

Implications

Our findings have implications for behavioral, perceptual,
electrophysiology, and modeling studies. First, we have dem-
onstrated that both body geometry and stochasticity in RFTs
modulate multisensory integration weights. It is possible that
other contextual variables such as attention or prior knowledge
also modulate multisensory weights and will subsequently
affect both perception and action. In addition, we have shown
that such modulations in multisensory weights can create
asymmetrical biases in reach movements. Such unexpected
biases may be prevalent in behavioral data obtained during
visuomotor experiments in which participants perform the task
in a robotic setup while their body is in various geometries,
e.g., tilted head forward or elevated elbow. Therefore, it is
important to consider that forcing specific body configurations
can create unpredicted effects that are important for interpret-
ing the behavioral data.

Our findings also suggest that the brain must have online
knowledge of the statistical properties of the signals involved
in multisensory integration. This could be achieved by popu-
lation codes in the brain (Ma et al. 2006), which agrees with the
current dominant view that the brain performs the required
computations through probabilistic inferences (Pitkow and
Angelaki 2017). Alternatively, multisensory weights and the
change of weights with contextual parameters could be learned
(Mikula et al. 2018). Learned weights could be especially
advantageous when it is difficult to estimate sensory reliability.
Computational models that include required latent variables are
crucial to understand the required computations. An important
benefit of such models is that they can be used to generate
training sets for neural networks to investigate potential neural
mechanisms underlying probabilistic inference. Such studies
will motivate appropriate electrophysiology experiments to
validate/refute predictions of related models.

APPENDIX

Here, we provide more details of how our model performs RFTs on
different sensory signals (modeled as Gaussian distributions). In our
study, we demonstrated that the proposed model was able to replicate
our behavioral data pattern (Fig. 9). In this section, we use the model
to provide a mechanistic explanation of the observed reach movement
patterns.

Sober and Sabes (2003) demonstrated that reaching errors caused
by dissociating visual and proprioceptive information can be ex-
plained by two components: MV error that is the error at the vector
planning stage and INV error, which is the error at the motor
command generation stage. They showed that adding these two
reaching errors leads to the error pattern observed in human partici-
pants. Furthermore, Burns and Blohm (2010) demonstrated that the
observed up-/downward shifts in reaching error curves can be ex-
plained by RFTs; any misestimation in the sensed head angle results
in an erroneous rotation of movement vector, which results in up-/
downward shifts in reach error curves. The logic is the same in our
model for explaining the observed biases in reach error curves for the
HR condition. Similarly, the up-/downward shifts in reach error
curves for the NL condition can be explained by erroneous RFTs;
applying an NL biases the head angle, which leads to an erroneous
rotation of the movement vector, resulting in shifts of error curves.

Applying an NL enabled us to evaluate the contribution of neck
muscle spindle information to head angle estimation. To achieve this,
we included a Bayesian head angle estimator in our model in which
the visual/vestibular and neck muscle spindle information are inte-
grated to estimate the head angle. Applying an NL biases the neck
muscle spindle information toward the direction of the load and
consequently biases the head angle estimation (Eqs. 7 and 8). This
bias in estimated head angle depends on two parameters: 1) relative
neck muscle reliability compared with visual/vestibular reliability and
2) overall head angle estimation variability [similar to the variable
RFTs variance in Burns and Blohm’s (2010) model].

As explained before, in our model, we estimate the head angle by
integrating visual/vestibular information with neck muscle informa-
tion. As a result, the overall sensed head angle variability depends on
the variability of each of aforementioned information. Consider the
situation in which overall head angle estimation variability is low
(Fig. A1, A and B). Low variability for head angle estimation resulted
from high reliability for both visual/vestibular and neck muscle
spindle information. Similarly, high variability of head angle estima-

A                                     B

C                                     D

Fig. A1. Effect of varying the reliability of neck muscle
(NM) spindle signals vs. visual/vestibular (V/V) signals.
Head angle is estimated by combining the neck muscle
spindle information with combined visual and vestibular
information using the Bayesian method; therefore, the effect
of applying neck load depends on 2 factors: 1) absolute
variability of head angle estimation and 2) relative reliability
of neck muscle spindle information compared with visual/
vestibular information. A and B: lower absolute value for
head angle estimation variability: this lower variability re-
sults from the high reliability of both visual/vestibular and
neck muscle information. Therefore, the up-/downward
shifts induced due to applying neck load are higher com-
pared with when the head angle estimation variability is
high (C and D). In addition to the absolute head angle
estimation variability, the relative reliability of neck muscle
spindle vs. visual/vestibular information impacts how much
applying neck load biases the reaching movement. A and C:
the lower the reliability of neck muscle spindle information
vs. visual/vestibular information, the lower the up-/down-
ward shifts in reaching error curves. B and D: increasing the
relative reliability of neck muscle information increases the
up-/downward shifts in reaching errors by applying neck
load. deg, Degrees.
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tion resulted from low reliability of both visual/vestibular and neck
muscle spindle information, and consequently applying NL creates
smaller biases (Fig. A1, C and D). We expect that applying an NL will
create higher shifts in reach error curves for when the reliability of
sensed head angle is high compared with when the reliability of
sensed head angle is low, regardless of their relative contribution
(compare Fig. A1, A vs. D and B vs. C).

In addition, the amount of shifts in reach error curves depends on
the relative reliability of neck muscle spindle information vs. visual/
vestibular information. When the relative reliability of neck muscle
information is high, the bias in reach error curves is higher compared
with when its reliability is low (Fig. A1, B vs. C). In our data, we
observed high variability for head angle estimation as well as rela-
tively higher contribution of visual/vestibular information compared
with neck muscle spindle information (C 	 26; Fig. A1C).

As mentioned before, at the heart of our RFT process, there is a
head angle estimator, which enabled us to retrieve the sensed head
angle based on the reach error patterns. Figure A2 demonstrates the
biases in head angle estimation for all of the experimental conditions.
As can be seen, applying NL biased the head angle estimation toward
the applied NL for all head angles. We performed t-test analysis and

observed that all of the changes in head angle estimation due to
applying NL are significant: �11 � t(8) � 12, P � 0.001.

In addition to up-/downward shifts in reach error curves by apply-
ing NL and HR, we observed a very surprising pattern in our data:
both HR and NL created greater biases in reaching movements when
reaching to targets away from the body (45–135°) compared with
reaching to targets toward the body (215–315°). This observation was
surprising, and, to our knowledge, none of the previous models (Burns
and Blohm 2010; Sober and Sabes 2003) could predict/explain this
pattern.

At this point, it should come as no surprise that our model explains
the difference in HR/NL effect for different targets by stochastic RFT
processes. Blohm and Crawford (2007) demonstrated that the brain
considers the full 3D body geometry to plan reach movements
accurately. As mentioned in the model description, we included the
3D body geometry in our RFT procedure: RFT processes are carried
out by sequential rotations/translations between different coordinates
centered on different body sections.

Figure A3A demonstrates different coordinates that have been
considered in our model in relation to each other. Including the 3D
body geometry resulted in a displacement in the center of rotation
between different coordinates and specifically in our experiment
between gaze-centered and head-centered coordinates. This displace-
ment of the center of rotation caused greater biases in reaching
movements for visual targets further away from vs. closer to the body
(Fig. A3A). Figure A3B provides a detailed example of how the
difference in the center of rotation results in an asymmetry in the
movement biases induced by HR/NL. The first block in Fig. A3B
shows the actual scene in front of the participants with two targets at
90 and 270°.

In our experiment, the participants fixated their eyes on the cross,
and this cross was indicated as their visual information of the initial
hand position as well. In this example, the hand was shifted 25 cm
horizontally to the right. The dotted arrows show the visual movement
vector toward the targets. Box 1 demonstrates the retinal representa-
tion of targets for 30° CCW HR. We assumed that the torsion effect
on retinal information was small and, therefore, ignored it. Since the
head is rotated 30° CCW, the retinal image on the back of the head is

Fig. A2. Biases in head angle estimation due to different head roll (HR) and
neck load (NL) conditions. Applying neck load biased the head angle estima-
tion toward the applied load for all head angles. Error bars are standard
deviations. deg, Degrees.

A                                    B

Fig. A3. Reference frame transformation (RFT) process mechanism. A: different coordinates in our RFT module. Difference in the center of rotation between
gaze-centered coordinate and head-centered coordinate resulted in an asymmetry of transformed hand position for 30° clockwise (30deg CW) vs. counterclock-
wise (CCW) head rolls. B: detailed example of the higher effect of stochastic RFTs on movement away from the body compared with movements toward the
body for 30° CCW head roll. Actual Scene: in our experiment, participants fixated their eyes on the center cross, and the visual feedback of the hand indicated
their hand on the center as well. Actual hand position is shifted to the right in this example, and it is occluded. Box 1: retinal image of the target is rotated 30°
CW; we ignored the torsion effects on retinal projection. Proprioceptive hand position is transformed using our RFT module (we assumed that head roll estimation
is erroneous; 35°). head cent., Head-centered. Box 2: initial hand position is estimated by combining visual information and transformed proprioceptive
information of the hand. Then, the movement vector (MV) is calculated by subtracting target position from the initial hand position. MSI, multisensory
integration. Box 3: calculated movement vector is transformed to the proprioceptive (Prop.) coordinate using the RFT module. Box 4: comparing the planned
movement with the movement only considering visual information. As can be seen, the misestimation in head angle created larger error for movement away from
body vs. movement toward the body. This happened due to the offset in the center of rotations between different coordinates.
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rotated 30° CW (actual head angle), and the center of this rotation is
the cross (gaze position). To estimate the hand position, propriocep-
tive information must be transformed to the retinal coordinates, and at
the heart of this transformation is the head rotation based on the
estimated head angle (blue box in Fig. 3). In this specific example, we
assumed that the head angle is overestimated by 5° and is estimated as
35°. In addition, since the centers of rotation for head-centered and
gaze-centered coordinates are different, the transformed hand position
is no longer in symmetry with the rotation in gaze-centered coordi-
nates and displaced and biased toward the body.

The next two steps in our model are multisensory integration to
estimate the hand position and movement vector calculations (box 2).
As has been shown by Sober and Sabes (2003, 2005), any transfor-
mation adds noise, and, therefore, visual information is more reliable
in the retinal coordinates, the estimated initial hand position is biased
toward the visual initial hand position, and the movement vector is
calculated by subtracting target position from this estimated initial
hand position. This movement vector, then, is transformed into shoul-
der-center coordinates to be executed, employing RFTs (box 3). We
compared the transformed movement vector with the visual move-
ment vector in box 4, and, as can be seen, the misestimation in head
angle created greater biases for target away from the body (90°)
compared with the target toward the body (270°).

Determining how stochastic noise in RFTs modulates multisensory
weights was one of the goals of this experiment. In Figs. 6 and 7, we
fitted Sober and Sabes’ (2003) model to the data and demonstrated
that both HR and NL modulate multisensory integration weights.
Similar to Burns and Blohm (2010), we were able to retrieve multi-
sensory integration weights from the covariance matrices. As has been
demonstrated in Fig. A3, RFTs dramatically change the distribution of
the transformed signal and consequently the covariance matrix
(Alikhanian et al. 2015). To account for such variations, we calculated
the determinant of the covariance matrix for calculating the multisen-
sory weights. Figure A4 shows visual weights in both visual (A) and
proprioceptive (B) coordinates.

Visual weights were lowest for head straight and no load condition
in visual coordinates and increased by HR and/or applying NL. Our
paired t-test showed that this increase was significant for all HR and
NL conditions [t(8) � �3, P � 0.05]. More specifically, applying the
NL increased the visual weights in visual coordinates while the head
was upright [t(8) � �3, P � 0.05], whereas it did not significantly
change when the head was not upright and NL was applied [t(8) �
�1, P 	 0.2]. Applying NL or HR did not significantly change visual
weights in visual coordinates except for when the head rolled 30° CW
[t(8) � �18, P � 0.001] or the NL applied to the left side [t(8) � 3,
P � 0.05]. Combination of HR and NL only modulated the visual

weights when the head was rolled 30° CW and NL applied to either
side [|t(8)| � 4, P � 0.05]. Therefore, our data and model show that
both noise in RFTs and the geometry of the body can influence
multisensory integration in a way that is explained through changes in
reliability of transformed signal by stochastic and geometrically
accurate RFT processes.
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